Next: The derivative operator Up: New and enhanced Previous: Enhanced numerical facilities

Enhanced integration facilities

Definite integration has been extended to handle more integrands of the following form:

where and other restrictions on the constants apply. In general these integrals can be expressed in terms of the Gamma function , the incomplete Gamma function , the Polygamma function , the Riemann Zeta function , the error function, the Fresnel integrals, and the Meijer G function . Examples where is a power of (possibly negative and/or fractional):


    > int( exp(-t^2)*cos(2*t)*t^2, t=0..infinity );

                                      1/2
                              - 1/4 Pi    exp(-1)


    > int( exp(-sqrt(2*Pi)*t)*sin(t^2), t=0..infinity );

                       1/2   1/2        1/2   1/2
                  1/4 2    Pi    - 1/2 2    Pi    FresnelS(1)


    > int( exp(-t)/t^(1/3), t=1..infinity );

                                 GAMMA(2/3, 1)


    > int( exp(-t)*ln(t)/t, t=1..infinity );

                                MeijerG(3, 0, 1)


    > int( exp(-t)*ln(t)/t^(1/2), t=1..infinity );

                               MeijerG(3, 1/2, 1)

Maple can do some cases where the denominator of is of the form , e.g.


    > int( exp(-t)*t^2/(1-exp(-2*t)), t=0..infinity );

                                  7/4 Zeta(3)

And also a few cases where includes an error function, e.g.


    > int( t*exp(-t^2)*erf(2*t+1), t=0..infinity );
                                                      1/2   1/2
                 1/2 erf(1) + 1/5 exp(-1/5) erfc(2/5 5   ) 5


    > int( ln(2*t^2)*erf(t/2)/t^(3/2), t=0..infinity );

                          1/2          1/2         1/2
                  ln(2) Pi           Pi          Pi    Psi(1/4)
                6 ----------- + 8 ---------- + 2 --------------
                   GAMMA(3/4)     GAMMA(3/4)       GAMMA(3/4)


bondaren@thsun1.jinr.ru