Asymptotic series have been extended to allow exponential terms to appear in the resulting series. Example:
> asympt( Psi(2*exp(x))-x, x, 4 ); 1 1 1 ln(2) - -------- - ---------- + O(-------) 4 exp(x) 2 4 48 exp(x) exp(x)
> limit( Psi(2*exp(x))-x, x=infinity ); ln(2)
Series expansions for erfc(x), GAMMA(a,x) for and MeijerG(a,b,x) for , have been added. Also asymptotic expansions for GAMMA(x) and binomial(n,k). Examples:
> asympt( GAMMA(x)*Ei(x)/x^x/sqrt(2*Pi), x ); 1 13 601 319721 60973877 1 ---- + ------- + -------- + ---------- + ------------- + O(-----) 3/2 5/2 7/2 9/2 11/2 13/2 x 12 x 288 x 51840 x 2488320 x x
# An indefinite summation using Gosper's algorithm > s := sum( binomial(2*n,n)/(n+1)/(2^n)^2, n ); binomial(2 n, n) s := - 1/2 ---------------- (n - 1) 2 (2 )
> asympt(s,n,4); 2 1 1 1 - ---------- + ------------ - ------------- + O(----) 1/2 1/2 1/2 3/2 1/2 5/2 7/2 Pi n 4 Pi n 64 Pi n n
# Hence since s = -2 at n = 0, we have > sum( binomial(2*n,n)/(n+1)/(2^n)^2, n=0..infinity ); 2