A Hamiltonian system with degrees of freedom satisfies Hamilton's
equations of motion [2]:
and
represent the position and momentum
respectively and are
-dimensional vectors.
is the
gradient operator taken w.r.t.
,
denotes the
derivative of
with respect to time, t.
is the scalar-valued, autonomous (time-independent)
Hamiltonian function. A Hamiltonian system is thus (necessarily) of even dimension
(with
in the autonomous form of (
)).
The Hamiltonian is time-invariant, i.e. it is a constant of the motion.
When the Hamiltonian is interpreted as the energy of the system, time-invariance
is equivalent to conservation of energy. To see this consider the chain
rule: