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1 Introduction

Resonance is one of the most interesting and intriguing phenomena in quan-
tum scattering. With a resonance one usually associates an unstable (meta-
stable) state that only exists during a certain time.

Typical example: two-particle scattering.

i
∂ψ
∂ t

= (−∆+V )ψ

Particle may “live” together during a certain period forming an unstable
(“resonant”) state.
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A barrier resonance

In the following:

Resonance (in a narrow sense)⇐⇒ a specific complex energy, the energy of
a resonant state

z = E + i
Γ
2

.
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S-matrix interpretation

Gamov (1928): resonances ⇐⇒ poles of the scattering amplitudes
[α decay of heavy nuclei] (that is, those of the S-matrix)

Titchmarsh (1946): Resonances are also poles
of the continued resolvent kernel

Jost functions (1940’s)

Complex scaling approach

Lovelace (∼ 1964) “complex rotation” of Hamiltonian
Balslev, Combes (1971) (rotation of the continuous spectrum)
Simon, Hagedorn, Hunziker,...

Hagedorn (1979): for a wide class of potentials the scaling resonances are
also the scattering matrix resonances.

We also mention the Lax-Phillips approach and various versions of pertur-
bation theory for resonances (Albeverio, Livšic, Howland, Rauch, ...)
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In contrast to the “normal” bound and scattering states, from mathematical
point of view the resonant ones are still a mysterious subject.

Many questions still remain unanswered.

In particular, how to get characteristics for scattering of a particle on a reso-
nant state of two other particles?

There is a problem even with the definition of resonance:

Resonances are NOT a unitary invariant of a self-adjoint (Hermitian) op-
erator

B. Simon [J. Chem. Phys. 14 (1978)]: Always an extra structure is neces-
sary to describe a resonance. Say, an “unperturbed dynamics” (in quantum
scattering theory); geometry (in acoustical or optical problems).

Resonances are always relative as the scattering matrix itself .



7

Typical setup

Kinetic energy operator H0 ⇐⇒ unperturbed dynamics

H = H0 +V, V interaction.

The resolvent
R(z) = (H− z)−1

is an analytic operator-valued function of z ∈ C\σ(H).

The spectrum σ(H) is a natural boundary for holomorphy domain of R(z)
considered as an operator-valued function.
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However the kernel R(·, ·,z) (given in some specific representation) may ad-
mit analytic continuation through the continuous spectrum σc(H).

Or the form 〈R(z)ϕ,ψ〉 does this for any ϕ,ψ of a dense subset of the Hilbert
space H .

Or the “compressed” resolvent PR(z)P admits such a continuation for P the
orthogonal projection onto a subspace of H .

In any case one deals with the Riemann surface of an analytical function.
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Simplest example: H = H0 =−∆, the two-body kinetic energy operator. In
this case

R0(x,x′,z) =
1

4π
eiz1/2|x−x′|

|x−x′| ,

where x,x′ are three-dimensional vectors.

Two-sheeted Riemann surface (coincides with that of z1/2).
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Analytic function is uniquely defined by its values on a set in C having
limiting point(s). Thus, if one knows the resolvent R(z) (or T -matrix, S-
matrix) on the physical sheet then one may, in principle, to express it on
unphysical sheets through its values in the physical sheet.

In such a case all the study of resonances would reduce to a work com-
pletely on the physical sheet!

We have suggested just such representations: Explicit representations for
R(z), T (z), and S(z) on unphysical sheets in terms of these quantities them-
selves taken from the physical sheet.

In particular, these representations show which blocks of the scattering
matrix are “responsible” for resonances on a certain unphysical sheet.
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References for this part of the material:

AM, Theor. Math. Phys. 97, 692 (1993)
AM, Theor. Math. Phys. 107, 784 (1996)
AM, Mathematische Nachrichten 187, 147 (1997)
AM and E. Kolganova, Few-Body Syst. Suppl. 10, 75 (1999)
AM, Few-Body Syst. 38, 115 (2006)

http://dx.doi.org/10.1007/BF01017515
http://uk.arxiv.org/abs/nucl-th/9505029
http://uk.arxiv.org/abs/funct-an/9509003
http://uk.arxiv.org/abs/physics/9810006
http://uk.arxiv.org/abs/physics/0511238
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2 An explicitly solvable model with a resonance

We start considering the resonances ab ovo. Namely, we first study a sim-
plest model Hamiltonian where a resonance is computed explicitly. For this
resonance it is even possible to prove, quite easy, that the corresponding
resonance state decays according to the exponential law.

If you are already quite experienced with resonances, you may simply skip
this section and go directly to Section 3 which is devoted to the explicit rep-
resentations for the T -matrix, scattering matrix, and resolvent on unphysical
energy sheet in the two-body problem.
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Consider a two-channel Hilbert space H =H0⊕H1 consisting of an infinite-
dimensional Hilbert space H0 (channel 0) and a one-dimensional space H1 =

C (channel 1). The elements of H are represented as vectors u =
(

u0

u1

)

where u0 ∈ H0 and u1 ∈ H1, with u1 being a complex number. The inner
product 〈u,v〉H = 〈u0,v0〉+ u1v1 in H is naturally defined via the inner
products 〈u0,v0〉 in H0 and u1v1 in H1.

As a Hamiltonian in H we consider the 2×2 operator matrix

H =
(

h0 b
〈 · ,b〉 λ

)
(2.1)

where h0 is the (selfadjoint, that is, Hermitian) operator in H0, and λ a real
number. A vector b ∈H0 provides the coupling between the channels.

We mention that the Hamiltonian (2.1) resembles one of the celebrated Friedrichs models
(see [K. O. Friedrichs, Comm. Pure Appl. Math. 1 (1948), 361]; some more details on
Hamiltonians like (2.1) can be found in [R. Mennicken and AM, Math. Nachr. 201 (1999),
117] and [AM, W. Sandhas, and V. B. Belyaev, J. Math. Phys. 42 (2001), 2490]).

http://uk.arxiv.org/abs/funct-an/9708001
http://uk.arxiv.org/abs/funct-an/9708001
http://theor.jinr.ru/~motovilv/copyr/crystal.htm
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• For example, we can assume that h0 is the kinetic energy operator of a particle on a
straight line,

h0 =− d2

dx2, x ∈ R. (2.2)

In this case b = b(x) is a usual square-integrable function of the variable x. Notice, that
the resolvent of the operator (2.2) has the following kernel (as usually, it is called the
free Green function):

r0(x,x′,z) =−eiz1/2|x−x′|

2iz1/2 , (2.3)

where z1/2 is understood as a two-sheeted function in the sense explained above on
page 9.
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If there is no coupling between the channels 0 and 1, i. e. for b = 0, then the
spectrum of H consists of the spectrum of h0 and the additional eigenvalue
λ . We assume that the continuous spectrum σc(h0) of the Hamiltonian h0 is
not empty and that the eigenvalue λ is embedded into σc(h0). For now it is
also assumed that λ is not a threshold point of σc(h0), and that the spectrum
σc(h0) is absolutely continuous in a sufficiently wide neighborhood of λ .

A nontrivial coupling (b 6= 0) between the channels 0 and 1 will, in gen-
eral, shift the eigenvalue λ to an unphysical sheet of the energy plane. The
resulting perturbed energy appears as a resonance, i. e., as a pole of the
analytic (or, more precisely, meromorphic) continuation of the resolvent
R(z) = (H−z)−1 taken between suitable states. We suppose that such a con-
tinuation through the absolutely continuous spectrum of h0 in some neigh-
borhood of λ is possible at least for the matrix element 〈r0(z)b,b〉 of the
resolvent r0(z) = (h0− z)−1. This yields a meromorphic continuability at
least for the compressed resolvent P1(H− z)−1

∣∣
H1

where P1 denotes the or-
thogonal projection onto the (one-dimensional) space H1.
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Actually, the explicit representation for the resolvent R(z) is easily seen to
be

R(z) =




r0(z)+
r0(z)b〈 · ,b〉r0(z)

M(z)
−r0(z)b

M(z)

−〈· ,b〉r0(z)
M(z)

1
M(z)


 . (2.4)

where the scalar function M(z) reads M(z) = λ − z−〈r0(z)b,b〉. Thus, if the
function 〈r0(z)b,b〉 admits analytic continuation in z through an interval of
the absolutely continuous spectrum σc(h0) of the entry h0, then the function
P1(H− z)−1

∣∣
H1

= M−1(z) admits such a continuation, too.

From (2.4) it is obvious that the poles of R(z) on the physical sheet are either
due to zeros of the function M(z) or due to poles of the resolvent r0(z). The
latter correspond to the discrete spectrum of the operator h0 which, thus, may
generate a part of the point spectrum of H.



17

In any case it is clear that the perturbation of the eigenvalue λ only corre-
sponds to solutions of the equation M(z) = 0, i. e. to solutions of

z = λ −〈r0(z)b,b〉. (2.5)

Equation (2.5) has no roots z with Imz 6= 0 on the physical sheet. This is
clear since for being eigenvalues of the selfadjoint operator H, they have, of
course, to be real. Thus, Eq. (2.5) may have solutions only on the real axis
and in the unphysical sheet(s) of the Riemann surface of the resolvent r0(z).
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Assume, in addition, that the channel Hamiltonian h0 generates no reso-
nances close to λ in a domain D of the unphysical sheet which is neigh-
boring the physical sheet from below the cut. This assumption implies that
for a wide set of unit vectors b̂ = b/‖b‖ the quadratic form 〈r0(z)b,b〉 =
‖b‖2〈r0(z)b̂, b̂〉 can be analytically continued in D . Moreover, under cer-
tain smallness conditions for ‖b‖, equation (2.5) is uniquely solvable and its
solution z−res in the lower complex half-plane reads

z−res =
‖b‖→0

λ −〈r0(λ + i0)b,b〉+o(‖b‖2). (2.6)

The real and imaginary parts of the resonance z−res = E− i
Γ
2

, thus, are given
by

E = λ −Re〈r0(λ + i0)b,b〉+o(‖b‖2),
Γ = 2Im〈r0(λ + i0)b,b〉+o(‖b‖2). (2.7)
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• Notice that there is a particular case of the model (2.1) which is completely solvable but
somewhat distinct from the assumptions that lead us to the approximate solution (2.6).
In this particular case we take λ just on a threshold of σc(h0). Namely, let h0 be given
by (2.2) and let λ = 0 and b(x) = βδ (x), 0 6= β ∈ R. Then by (2.3) equation (2.5) is
reduced to

z =− i
2

β 2

z1/2 .

By inspection, this equation has exactly three solu-
tions:

(1) binding energy z0 =−(β 2/2)2/3

(in the physical sheet),

(2) resonance z+
res = (β 2/2)2/3ei(2π+π/3)

(in the upper half-plane of the unphysical sheet),

(3) resonance z−res = (β 2/2)2/3ei(4π−π/3)

(in the lower half-plane of the unphysical sheet).

The fact that these binding energy and resonances are proportional not to β 2 (as one
could expect looking at formula (2.6)) but to β 4/3 corresponds just to the threshold
position of the embedded eigenvalue λ = 0 with respect to the continuous spectrum
σc(h0) = σ(h0) = [0,+∞).
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Exponential decay of the resonance state

Let us suppose that an initial state of the system described by the Hamilto-

nian (2.1) corresponds exactly to the “wave function” ϕ =
(

0
1

)
. Then evo-

lution of the system in time is described by the solution ψ(t) of the Cauchy
problem

i
dψ
dt

= Hψ, ψ
∣∣
t=0 = ϕ, (2.8)

that is,
ψ(t) = e−iHtϕ.

The probability Pϕ(t) to find the system at the time t still in the state ϕ is
given by

Pϕ(t) = |〈ψ(t),ϕ〉|2.
The remainder 1−Pϕ(t), hence, determines the probability for the state ϕ to
decay into open channels of the continuous spectrum of the sub-Hamiltonian
h0.
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To estimate the probability Pϕ(t), we use the standard integral representation
of a function of an operator via its resolvent. In the case considered this
means

exp{−iHt}=− 1
2πi

∮

γ

dze−izt(H− z)−1. (2.9)

The integration in (2.9) is performed in the physical sheet along a contour γ
encircling counterclockwise the spectrum of the matrix H. Recall that, due
to the selfadjointness of the operator H, this spectrum is real. Taking into
account representations (2.4) and (2.9) one finds

〈ψ(t),ϕ〉=− 1
2πi

∮

γ

dz
exp(−izt)

λ − z−〈r0(z)b,b〉 (2.10)

Under the assumption that b is very small this leads to the following result:
The behavior of the integral (2.10) for t > 0 is described by the formula

〈ψ(t),ϕ〉= e−iz−rest
[
1−O(‖b‖2)

]
+ ε(t) (2.11)

where the background term ε(t) = O(‖b‖2) is small, |ε(t)|¿ 1, for all t > 0.
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The proof of the asymptotics (2.11) is performed by estimating the con-
tribution of the resonance pole z−res to the integral (2.10). This is done by
deforming parts of the contour γ situated in a neighborhood of the energy λ
(see the picture below).

A scheme showing the deformation of the integration path γ . The part γ+ of the resulting
contour lying in the lower half-plane belongs to the unphysical sheet, while the part γ−

lies completely in the physical sheet. The asterisks “∗” on the l.h.s. part of the picture
denote the (possible) discrete eigenvalues of the Hamiltonian H while the solid straight line
corresponds to the continuous spectrum.
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A part γ+ of γ , situated initially on the upper rim of the cut, is shifted into
the neighboring unphysical sheet. Having done such a deformation one finds
explicitly the residue of the integrand in (2.10) at z = z−res.

An analogous deformation of a part γ− of γ , situated initially on the lower
rim, is performed in a domain Imz < 0 of the physical sheet.

(!) It is assumed that, though the parts γ+ and γ− belong to different energy
sheets, their positions on these sheets coincide.

It is also assumed that b is so small and that the deformed contour γ lies so
far from λ that for any z ∈ γ± the estimate

|〈r0(z)b,b〉| ¿ |λ − z| (2.12)

holds.
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Thus, the integration in (2.10) around the continuous spectrum of H, except
the residue at z = z−res, gives

− 1
2πi

∫

γ+

dz exp(−izt)
(

1
λ − z−〈r0(z)b,b〉+ −

1
λ − z−〈r0(z)b,b〉−

)

=− 1
2πi

∫

γ+

dz exp(−izt)
〈r0(z)b,b〉+−〈r0(z)b,b〉−

[λ − z−〈r0(z)b,b〉+] [λ − z−〈r0(z)b,b〉−]
.

(2.13)

Here we use a specific notation 〈r0(z)b,b〉+ for the values of the function
〈r0(z)b,b〉 at points z belonging to the curve γ+ (i. e., lying in the unphysical
sheet), and 〈r0(z)b,b〉− for the values of 〈r0(z)b,b〉 at the same points of the
curve γ− (i. e., lying in the physical sheet).

Both 〈r0(z)b,b〉± are of the order of O(‖b‖2), and by the earlier assumption
(2.12) we have |〈r0(z)b,b〉±| ¿ |λ − z|, while the exponential exp(−izt) at
Imz < 0 is decreasing for t > 0.



25

The value of the function (2.13), thus, is always small, having an order of
O(‖b‖2), and is even decreasing (in general nonexponentially) with increas-
ing t. We include the contribution of this function into the background term
ε(t).

The term ε(t) also includes a contribution to (2.10) from the residues at the
discrete eigenvalues of H. Apart from factors oscillating when t changes,
the value of this contribution remains practically the same for all t ≥ 0.

Formula (2.11) shows explicitly that in a large time interval 0≤ t < T ,

T ∼
∣∣log

(
max |ε(t)|)∣∣

Γ
,

the decay of the particular state ϕ we have “prepared” is actually of an expo-
nential character. The rate of this decay is determined mainly by the width
Γ of the resonance z−res, namely

Pϕ(t)∼= exp{−Γt}(1+O(‖b‖2)
)
+O(‖b‖2). (2.14)
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Behavior of the survival probability Pϕ(t)
(
according to formula (2.14)

)
.

Thus, we have shown that, after turning the coupling between the channels

0 and 1 on, the state ϕ =
(

0
1

)
decays according to the exponential law, at

least in the beginning.

Such a situation is quite common for resonance states. Exponential decay is
observed in various physical experiments.
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3 Two-Body Problem

k =
[

m1 +m2

2m1m2

]1/2

·m1p2−m2p1

m1 +m2
(reduced relative momentum)

(h f )(k) = k2 f (k)+(V f )(k)

V (k,k′) = V (k−k′) — in case of local potentials —
and V (k) = V (−k), k ∈ R3.

For simplicity we assume that V (k) is holomorphic for all k ∈ C3.
(In fact it suffices to require the holomorphy of V (k) only in a “strip” | Imk|< a for some
a > 0.)
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Resolvents:

r0(z) = (h0− z)−1, (h0 f )(k) = k2 f (k),
r(z) = (h− z)−1.

r0(k,k′,z) =
δ (k−k′)

k2− z

T -operator:

t(z) = V −V r(z)V =⇒ r(z) = r0(z)− r0(z)t(z)r0(z)
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The Lippmann-Schwinger equation for t(z)

t(z) = V −V r0(z)t(z),

that is
t(k,k′,z) = V (k,k′)−

∫

R3

dq
V (k,q)t(q,k′,z)

q2− z
. (3.1)

Clearly, all the dependence of t on z in (3.1) is determined by the integral
term on the r.h.s. part. This integral is nothing but a particular case of the
Cauchy type integral

Φ(z) =
∫

RN

dq
f (q)

λ +q2− z
(N = 3 or, later on, N = 6 in the Faddeev eqs.).

Cauchy-type integrals of just the same form are also present in the Faddeev
equations.
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Denote by Rλ the Riemann surface of the function

ζ (z) =
{

(z−λ )1/2, N odd,
ln(z), N even.
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Lemma 1. For a holomorphic f (q), q ∈ CN, the function

Φ(z) =
∫

RN
dq

f (q)
λ +q2− z

is holomorphic onC\ [λ ,+∞) and admits the analytic continuation onto Rλ
as follows

Φ(z)|Πl = Φ(z)− l πi(
√

z−λ )N−2
∫

SN−1
dq̂ f (

√
z−λ q̂). (3.2)

Do not confuse l with orbital moment! Here l is the first letter of the Russian
word “list” ⇔ “sheet”.

We only deal with N = 3 in the two-body problem (and, later on, with N = 6
in the Faddeev eqs.).
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Now for r0(z) = (h0− z)−1 set

(
r0(z) f1, f2

)≡
∫

R3
dq

f1(q) f2(q)
q2− z

(
= Φ(z), λ = 0

)
,

where f1 and f2 are holomorphic function. Then by Lemma 1

(
r0(z) f1, f2

)|Π1 =
(
r0(z) f1, f2

)|Π0−πi
√

z
∫

S2
dq̂ f1(

√
zq̂) f1(

√
zq̂)

m
r0(z)|Π1 = r0(z)+ a0(z)j†(z)j(z),

where a0(z) =−πi
√

z, and

(
j(z) f

)
(k̂) = f (

√
zk̂).
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What can be said about the operator t(z)?

t(z) = V −V r0t.

After the continuation to the sheet Π1 we obtain

t ′ = V −V (r0 + a0j†j)t ′, t ′ = t|Π1,

which implies that
(I +V r0)t ′ = V − a0V j†j t ′.

Perform inversion of (I +V r0) taking into account that t(z) = V −V r0t and,
hence, (I +V r0)−1V = t:

t ′ = t− a0 tj†j t ′. (3.3)
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Further on, apply j to the both parts and get

j t ′ = j t− a0 j tj† j t ′,

which means
(I + a0 j tj†) j t ′ = j t. (3.4)

Notice that

I + a0 j tj† = s(z) is the scattering matrix,

s(k̂, k̂′,z) = δ (k̂, k̂′)−πi
√

z t(
√

zk̂,
√

zk̂′,z).
Hence,

j t ′ = [s(z)]−1 j t
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Come back to Eq. (3.3) and conclude that

t ′ = t− a0 tj† [s(z)]−1 j t, (3.5)

a0(z) =−πi
√

z,

that is

t(z)|Π1 = t(z)− a0(z) t(z)j†(z) [s(z)]−1 j(z) t(z). (3.6)

All the entries on the r.h.s. of (3.6) are taken from the physical sheet!
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From (3.6) we derive that

s(z)|Π1 = E [s(z)]−1 E , ,

where E is the inversion, (E f )(k̂) = f (−k̂).

In a similar way,

r(z)|Π1 = r + a0 (I− rV )j† [s(z)]−1j(I−V r).
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Hence the resonances are nothing but zeros of s(z) in the physical sheet, that
is,

z is a resonance ⇐⇒ there is A on S2 such that s(z)A = 0.

A is the breakup amplitude of the resonance state, i.e. the corresponding
“Gamov vector” (the resonance solution to the Schrödinger equation) has
the following asymptotics

ψres(x) ∼
x→∞

A (−x̂)
e−i

√
z|x|

|x| .
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4 Three-Body Problem

kα =
(

mβ +mγ

2mβ mγ

)1/2 mβ pγ −mγpβ

mβ +mγ
,

pα =
(

m1 +m2 +m3

2mα(mβ +mγ)

)1/2 (mβ +mγ)pα −mα(pβ +pγ)
m1 +m2 +m3

Here, (α,β ,γ) is a cyclic permutation of the indices (1,2,3).

H0 = k2
α +p2

α, V = V1 +V2 +V3, H = H0 +V

R0(z) = (H0− z)−1, R(z) = (H− z)−1
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T -operator: T (z) = V −V R(z)V

Faddeev components:

Mαβ = δαβVα−VαR(z)Vβ (α,β = 1,2,3)

Faddeev equations in the matrix form:

M(z) = t(z) − t(z)R0(z)ϒM(z) .

Here

R0 =




R0 0 0
0 R0 0
0 0 R0


 and t =




t1 0 0
0 t2 0
0 0 t3




with
tα(P,P′,z) = tα(kα,k′α,z−p2

α)δ (pα−p′α).

ϒ =




0 1 1
1 0 1
1 1 0


 , M =




M11 M12 M13

M21 M22 M23

M31 M32 M33



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Let hα be the Hamiltonian of the two-body subsystem α , and εα and ψα the
(only) binding energy and b.s. wave function, respectively, that is,

hαψα = εαψα.

Then

tα(k,k′,z) =−ϕα(k)ϕα(k′)
εα− z

+ t̃α(k,k′,z)

with the formfactor
ϕα = Vαψα.

Recall that
R0(P,P′,z) =

δ (P−P′)
P2− z

.

These kernels (associated with the corresponding thresholds) are the sources
of the Cauchy type integrals in Faddeev equations.
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Further, we perform the analytic continuation of the Faddeev equations. It is
remarkable that

the continued Faddeev equations can be solved explicitly (!)
— in terms of the matrix M itself,

and the “values” of M(z) are taken exclusively from the physical energy
sheet. The situation is very the same as in the case of the two-body T -matrix.

Surely, the result of continuation depends on the unphysical sheet under
consideration.

How many sheets do we have in the three-body case?
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Two-body binding energies ε1, ε2, ε3 are square root branching points
The three-body threshold 0 is a logarithmic branching point

Hence, only encircling the two-body thresholds one arrives at seven different
unphysical sheets.

The three-body threshold generates infinitely many unphysical sheets.

There is also a “fine structure”: in particular, additional branching points, already on the
unphysical sheets, may be generated by the two-body resonances. We did not yet have a
look at the unphysical sheets of the “second order”.
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In order to enumerate the sheets (of the first order only) we need a multi-
index,

l = (l0, l1, l2, l3),
with

l0 = . . . ,−1,0,1, . . . (0 physical, ±1,±2, . . . unphysical)
lα =0,1 (0 physical, 1 unphysical)

Πl the corresponding unphysical sheet

Also introduce

L =




l0 0 0 0
0 l1 0 0
0 0 l2 0
0 0 0 l3


 and L̃ =




|l0| 0 0 0
0 l1 0 0
0 0 l2 0
0 0 0 l3


 .
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Only physical sheet and three neighboring sheets of infinitely many unphysical sheets are
shown here: the only two-cluster unphysical sheet and two three-body unphysical sheets.
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In the simple four-channel case under consideration the three-body scatter-
ing matrix is a 4×4 operator matrix of the form

S(z) = Î +A(z)T̂ (z),

T̂ =




T̂00 T̂01 T̂02 T̂03

T̂10 T̂11 T̂12 T̂13

T̂20 T̂21 T̂22 T̂23

T̂30 T̂31 T̂32 T̂33


 ,

where

A(z) = diag{−πiz2,−πi
√

z− ε1,−πi
√

z− ε2,−πi
√

z− ε3}
Up to a scalar function of z the kernel of the entry T̂αβ coincides with the
amplitude for the corresponding process,

T̂00 : 3−→ 3

T̂α0 : 2−→ 3, α = 1,2,3

T̂0β : 3−→ 2, β = 1,2,3

T̂αβ : 2−→ 2, α,β = 1,2,3
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T =




T00 T01 T02 T03

T10 T11 T12 T13

T20 T21 T22 T23

T30 T31 T32 T33




with elements
T00(z) = T (z) = V −V R(z)V,

∣∣ T00(P,P′,z)
T0β(z) =

(
V β −V R(z)V β

)|ψβ〉,
∣∣ T0β(P, p′β ,z)

Tα0(z) = 〈ψα|
(
V α−V αR(z)V

)
,

∣∣ Tα0(pα,P′,z)
Tαβ(z) = 〈ψα|

(
V α−V αR(z)V β

)|ψβ〉,
∣∣ Tαβ(pα, p′β ,z)

α,β = 1,2,3.

(!!) U00 = T , U0β = V β −V RV β , Uα0 = V α −V αRV , Uαβ = V α −V αR(z)V β

— transition operators =⇒ AGS equations: refer to Prof. Sandhas’ lecture

T̂00(P̂, P̂′,z) = T00(
√

zP̂,
√

zP̂′,z),

T̂0β(P̂, p̂′β ,z) = T0β(
√

zP̂,
√

z− εβ p̂′β ,z),

T̂α0(p̂α, P̂′,z) = Tα0(
√

z− εα p̂α,
√

zP̂′,z),

T̂αβ(p̂α, p̂′β ,z) = Tα0(
√

z− εα p̂α,
√

z− εβ p̂′β ,z),
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Explicitly solving the continued Faddeev equations results in the following

M|Πl = M +QM LS−1
l L̃ Q̃M.

where QM and Q̃M are explicitly written in terms of the Faddeev components
Mαβ taken immediately from the physical sheet. Sl is a “truncation” of the
total three-body scattering matrix S,

Sl = I +A(z)LT̂ L̃.

Similarly,

R|Πl = R+QR LS−1
l L̃ Q̃R.

Therefore, the singularities of M(z)|Πl and S(z)|Πl (as well as the ones of
R(z)|Πl)) are determined by the inverse truncated scattering matrix in Sl(z)−1.

L̃ is nothing but a projection! — An example at the blackboard.
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Thus, to find the resonances on the sheet Πl one should simply look for the
zeros of the truncated scattering matrix Sl(z) in the physical sheet, that is,
for the points z where Sl(z) has eigenvalue zero:

Sl(z)A = 0.

The vector A will consist of breakup amplitudes of the resonance state into
the channels 0, 1, 2, and 3,

A =




A0(X̂)
A1(ŷ1)
A0(ŷ2)
A0(ŷ3)


 (in coordinate space).

To this end one can employ any approach that allows to calculate the cor-
responding truncation of the scattering matrix (surely, only for the energies
z in the physical sheet). That is, any approach that allows to calculate the
appropriate scattering, rearrangement and breakup amplitudes.
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5 Configuration space. Applications

In order to find the amplitudes involved in Sl, one can use in particular the
Faddeev differential equations.

We have employed the two-dimensional partial-wave Faddeev equations (aris-
ing as the result of a decomposition of the 6-dimensional Faddeev equations
over bispherical harmonics).

• nnp system

• System of three bosons with nucleon masses

• 4He three-atomic system

Refs.: E. A. Kolganova and AM, Phys. Atom. Nucl. 60 (1997), 177
AM and E. A. Kolganova, FBS Suppl. 10 (1999), 75
E. A. Kolganova and AM, Phys. Atom. Nucl. 62 (1999), 1179
E. A. Kolganova and AM, Comput. Phys. Comm. 126 (2000), 88
E. A. Kolganova, AM, and Y. K. Ho, Nucl. Phys. A684 (2001), 623
E. A. Kolganova, AM, and Y. K. Ho, JCMSE 2 (2002), 149

http://uk.arxiv.org/abs/nucl-th/9602001
http://uk.arxiv.org/abs/physics/9810006
http://uk.arxiv.org/abs/physics/9808027
http://uk.arxiv.org/abs/physics/9810005
http://uk.arxiv.org/abs/nucl-th/0006085
http://uk.arxiv.org/abs/physics/0011060
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With our computer code we could only calculate the 2→ 2 and 2→ 3 ampli-
tudes. Hence we were restricted to the study of resonances on the two-cluster
unphysical sheet, the one neighboring the physical sheet along the interval
(εd,0).

The resonances were looked for as zeros of the scattering matrix

S(0,1)(z) = S0(z) = 1+2ia0(z),

where a0(z) stands for the s-wave 2→ 2 elastic scattering amplitude.
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Admissible domain in the case of three particles with the same mass; εd

stands for the deuteron (or dimer) binding energy (the picture is borrowed from
[E. A. Kolganova and AM, Phys. Atom. Nucl. 62 (1999), 1179]; for explanations see this
paper).
An advantage: with this approach we can, of course, calculate virtual levels.

http://uk.arxiv.org/abs/physics/9808027
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More details on formalism

Example of the symmetric 4He3 system. Restrict to a total angular momentum L = 0.
Two-dimensional integro-differential Faddeev equations

[
− ∂ 2

∂x2 −
∂ 2

∂y2 + l(l +1)
(

1
x2 +

1
y2

)
−E

]
Φl(x,y) =

{ −V (x)Ψl(x,y), x > c
0, x < c .

(5.1)

Here, x,y stand for the standard Jacobi variables and c for the core range. The angular
momentum l corresponds to a dimer subsystem and a complementary atom; for an S-wave
three-boson state. The partial wave function Ψl(x,y) is related to the Faddeev components
Φl(x,y) by

Ψl(x,y) = Φl(x,y)+∑
l′

∫ +1

−1
dη hll′(x,y,η)Φl′(x′,y′), (5.2)

where

x′ =

√
1
4

x2 +
3
4

y2−
√

3
2

xyη , y′ =

√
3
4

x2 +
1
4

y2 +
√

3
2

xyη ,

and 1≤ η ≤ 1.
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The functions Φl(x,y) satisfy the boundary conditions

Φl(x,y) |x=0 = Φl(x,y) |y=0 = 0 . (5.3)

Moreover, in the hard-core model they are required to satisfy the condition

Φl(c,y)+∑
l′

∫ +1

−1
dη hll′(c,y,η)Φl′(x′,y′) = 0 . (5.4)

This guarantees the wave function Ψl(x,y) to be zero not only at the core boundary x = c
but also inside the core domains.

The asymptotic boundary condition for the partial-wave Faddeev components of the
two-fragment scattering states reads, as ρ → ∞ and/or y→ ∞,

Φl(x,y; p) = δl0ψd(x)
{

sin(py)+ exp(ipy)
[
a0(p)+o

(
y−1/2

)]}

+
exp(i

√
Eρ)√ρ

[
Al(θ)+o

(
ρ−1/2

)]
.

(5.5)

Here, ψd(x) is the dimer wave function, E stands for the scattering energy given by E =
εd + p2 with εd the dimer energy, and p for the relative momentum conjugate to the vari-
able y. The variables ρ =

√
x2 + y2 and θ = arctan

y
x

are the hyperradius and hyperangle,
respectively. The coefficient a0(p) is nothing but the elastic scattering amplitude, while the
functions Al(θ) provide us, at E > 0, with the corresponding partial-wave Faddeev breakup
amplitudes.
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4He3 [E. A. Kolganova and AM, Phys. Atom. Nucl. 62 (1999), 1179]

http://uk.arxiv.org/abs/physics/9808027
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The figure below has been borrowed from [E. Kolganova and AM, Proc. of 9th Intern. Conf. on Computa-
tional Modelling and Computing in Physics, p. 177]

http://uk.arxiv.org/abs/nucl-th/9702037
http://uk.arxiv.org/abs/nucl-th/9702037
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Conclusions

• Explicit representations for the three-body T -matrix, scattering matrix,
and resolvent on unphysical energy sheets not only describe the struc-
ture of these quantities but also suggest the ways to calculate three-body
resonances.

• A resonance on a sheet Πl corresponds to a point z on the physical sheet
where the truncated scattering matrix Sl(z) has eigenvalue zero,

Sl(z)A = 0.

• The corresponding eigenvector A consists of breakup amplitudes of the
resonant state into various channels.

•We have also developed a numerical approach to calculation of three-
body resonances based on the Faddeev differential equations in coordi-
nate space. This approach has been successfully applied to several three-
body systems (including nnp and 4He3). In particular the mechanism of
emerging the Efimov states in the 4He3 has been studied.
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http://uk.arxiv.org/abs/physics/9612012
http://uk.arxiv.org/abs/physics/9612012
http://uk.arxiv.org/abs/physics/9709037
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72Appendix: Detail formulas
For more details and explanations see [AM, Mathematische Nachrichten 187, 147 (1997)]

http://uk.arxiv.org/abs/funct-an/9509003
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