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The small number of particles in the few-nucleon problem allows accurate solutions of
the quantum mechanical many-body problem without the need of approximations,
unavoidable for more complex systems. Therefore the comparison of theoretical
results with experimental data of can lead to conclusive statements with respect to
the assumptions for the underlying nuclear dynamics on which the theory is based.

Technical methods for four-body problems

In the past, several efficient methods have been developed to solve the Schrödinger
equation for four-nucleon bound states accurately. These are

F Gaussian-basis variational, the stochastic variational,hyperspherical variational,

F the Green’s function Monte Carlo,

F the no-core shell model and

F the effective interaction hyperspherical harmonic methods

F Faddeev-Yakubovsky



2001: benchmark result - seven different approaches obtained the same 4He bound
state properties using the Argonne nucleon-nucleon potential
The purpose of these lectures is to provide the pedagodgical introduction into the
Faddeev-Yakubovsky method with an example of the four-body problem

History

1956 Skornyakov-Ter-Martirosyan: zero range nuclear forces, divergence
for the doublet three nucleon channel, for the first time subdivision
of the three nucleon function into (what will be called later)
Faddeev components was introduced

1960 Faddeev
60’ Attemts to generalize FE for many-body case:

Weinberg (1963)
Blankenbecler and Sugar (1964)
Rosenberg (1964)
and many others

1967 Yakubovsky paper in Sov. J. Nucl. Phys.
1967 Faddeev talk at the Birmingam Few Body Conference
1970 AGS equations
70’ First numerical results for simple separable and local potentials
90’ Beginning of four-body machinery. Solving the FY equations for

realistic interactions (W. Glöckle et al. Bochum; J. Carbonell
at al., Grenoble; Y. Koike it et al., Tokio)
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The topics I omit from the discussion

F Other variants of equations for N-body dynamics

F No attempt of mathematical rigor

F Computational methods

F FY equations in the coordinate space

F Inclusion of the Coulomb potential

F Experimental situation in the four-nucleon system is touched only
minimally



Introduction I: Fredholm integral equations

The Lippmann-Schwinger (LS) equation represents a particular case of the Fredholm
integral equation. Before discussing the LS equation I want to remind a few facts
concerning the Fredholm theory. I shall make no attempts at rigor or completeness
and shall omit all the proofs which can be found in any standard text book on integral
equations and functional analysis.

The inhomogeneous Fredholm equation (IFE) of the second kind is

ϕ(x, z) = f(x, z) +

∞Z

0

K(x, s, z)ϕ(s, z)ds,

where the parameters z can be everywhere in the complex plain. Assume that the
kernel K(z) is the symmetric operator K(x, s; z) = K(s, x; z) and satisfies the
Schwartz reflection principle K(x, s; z∗) = K∗(x, s; z) in the complex z plain cut
along the real positive semi-axis. We assume also that for all z except the cut

τ(z) =

∞Z

0

∞Z

0

|K(x, s; z)|2dxds < ∞,

so for any complex or negative z operator K(z) is an L2 or “Hilbert-Schmidt”
operator.



Rewrite IFE in the operator form

|ϕ(z)〉 = |f(z)〉+ K(z)|ϕ(z)〉
Any linear integral equation of this type with the L2 kernel K(z) can be solved
immediately if we know the resolvent Γ(z)

|ϕ(z)〉 = |f(z)〉+ Γ(z)|f(z)〉,
where Γ(z) satisfies

Γ(z) = K(z) + K(z)Γ(z)

This equation is a prototype of many integral equations in quantum mechanics and

field theory.



Introduction II: Two particle Lippmann-Schwinger equation

Consider non relativistic two-body scattering with Hamiltonian H = H0 + V , H0 is
the kinetic energy operator and V is the interaction potential. All physically
interesting information about a system can be obtained if we know the Green function
(or the resolvent) G(z), an operator defined for all W outside the spectrum of H by

G(z) = (z −H)−1

The scattering process may be described in terms of the wave function Ψ+ which
satisfies the Schrödinger equation (E is the energy)

HΨ+ = EΨ+

with a certain asymptotic boundary condition in the configuration space. This
condition may be roughly formulated as follows

Ψ+ = Φ + outgoing wave

The incoming term Φ represents a plane wave for the two particles relative motion.
The exact meaning of the term “outgoing wave” may be most simply formulated in
the momentum space giving a precise prescription as to how the singularities of the
energy denominators are to be dealt with :

Ψ+ = lim
ε→0+

iεG(E + iε)Φ



To derive the operator equation for the Green function we first write

G(z) = (z −H0 − V )−1 = [(z −H0)(1−G0(z)V )]−1 =

(1−G0(z)V )−1 (z −H0)−1 = (1−G0V )−1 G0(z),

where G0(z) = (z −H0)−1 is the free Green function. Suppose the potential is weak

and expand the (1−G0(z)V )−1 in powers of G0V .

(1−G0(z)V )−1 = 1 + G0(z)V + G0(z)V G0(z)V + ... (1)

Then for G(z) we obtain the formal iteration series

G(z) = G0(z) + G0(z)V G0(z) + G0(z)V G0(z)V G0(z) + ...

= G0(z) + G0(z)V × [ G0(z) + G0(z)V G0(z) + . . . ]

The expression in square brackets coincides with the iteration series for G(z), therefore

G(z) = G0(z) + G0(z)V G(z)

The above equation represents the (operator) Lippmann-Schwinger equation for the

Green function. We stress that these equations are valid even though the iteration

series may diverge.



The LS equation can be also written in terms of the T-matrix T (z)

T = V + V GV, G = G0 + G0TG0,

In a perturbation theory an expansion of T (z) in powers of the potential V (assumed
to be sufficiently weak) is

T (z) = V + V G0(z)V + V G0(z)V G0(z)V + ...

The successive terms can be represented graphically.

�T =� +� +� + . . .

Figure 1: Diagrams for iteration series

Each curly line represents an interaction due to the potential V . In between

interactions, the particles move freely (hence the free propagator G0). Very simple

ladder diagrams appear, corresponding to the fact that there are no creation and

annihilation phenomena in non-relativistic quantum mechanical problems.



Suppose that we were rash enough to try to calculate T (z) by expanding
in powers of V . Using the same trick as was applied to derive the LS
equation for G(z), we obtain

T (z) = V + V G0(z)V + V G0(z)V G0(z)V + ...

= V + V G0(z)[V + V G0(z)V + V G0(z)V G0(z)V + ...] =

= V + V G0(z)T (z), V G = TG0, GV = G0T

In the momentum space

t(k′,k; z) = V (k′,k) +
∫

V (k′,p) t(p,k; z)
z − p2/2µ

d3p

(2π)3

The integrand has a fixed singularity at p =
√

2 µ z. This singularity can
be easily treated either analytically or numerically.

In the three-nucleon case break-up boundary condition is reflected by
moving singularities. Even so, the numerical treatment is well
established.



Since V (k′,k) is the symmetric function, the LS kernel K(z) = V G0(z) in the
energy region below threshold may be reduced to the real symmetric form. Next, for z
not on the positive real semi-axis but on the physical sheet, K(z) is a L2 operator
under very general assumptions on V .

τ(z) =
µ

3
2

2π
√

2 Im z

Z
V 2(r) d3r < ∞.

This assumption for the validity of the Fredholm theory is very weak. In particular, it
holds for the potentials usually used in nuclear physics

However, a formal difficulty arises when the energy parameter z takes a positive value,
because, no matter how well-behaved the potential is, τ(E + iε) never exist for E > 0

This difficulty is only apparent and not real. Here we simply suppose that one can do

away with this problem by performing an analytic continuation in z to a region

Im
√

z 6= 0. Once we establish the Fregholm properties in this region, we can

analytically continue back to physical region of the energy parameter with confidence

that the Fredholm properties must still hold. A rigorous proof of this statement is out

of scope of the present lectures



The Hilbert identity. Unitarity condition

G(z1)−G(z2) = (z2 − z1)G(z1)G(z2)

Multiply this equation by V from the left and from the right. In the left-hand side
using the relation V GV = T − V we obtain

T (z1)− T (z2)

In the right-hand side using the relations V G = TG0, GV = G0T we obtain

(z2 − z1) T (z1) G0(z1) G0(z2) T (z2)

Let z1 = E + iε and z2 = E − iε, then z2 − z1 = −2iε, and

T (E + iε)− T (E − iε) = 2iIm T (E + iε) =

= −2i ε T (E + iε) G0(E + iε) G0(E − iε) T (E − iε)

We want to apply this equation to calculate the imaginary part of the on-shell
T-matrix t(k′,k; z) for z = k2/2µ + iε = k′ 2/2µ + iε. We first simplify the
notations and define

t(k′,p) = t(k′,p; k2/2µ + iε), t(p,k) = t(p,k; k2/2µ + iε)

t(k′,k) = t(k′,k; k2/2µ + iε), |k′| = |k|



Im t(k′,k) = − lim
ε→0

ε

(2π)3

Z
dΩp

Z
t(k′,p) t∗(p,k)

( k2

2µ
− p2

2µ
)2 + ε2

p2dp

Using

lim
ε→0

ε

x2 + ε2
= πδ(x)

we get

lim
ε→0

ε“
k2

2µ
− p2

2µ

”2
+ ε2

= πδ(
k2

2µ
− p2

2µ
) = 2µπδ(k2 − p2)

Then we obtain

Im t(k′,k) = − µ

4π2

Z
dΩk′

∞Z

0

t(k′,p) δ(k2 − p2) t∗(p,k)p2dp

= − µ

8π2
k

Z
dΩk′ |t(k′,k)|2

For the amplitude f(k′,k) normalized so that dσ/dΩ = |f(k′,k)|2the unitarity
condition aquires the familiar form

Imf(k′,k) =
k

4π

Z
dΩk′ |f(k′,k)|2



The separable potential

The LS equation generally can not be solved analytically. An exception is the so
called separable (non local) potential in which the dependence on the initial and final
momenta is factorized.

V (p, p′) = − λ

2µ
g(p) g(p′)

The corresponding T-matrix posses the analytical solution

t(p′, p; E + iε) = − λ

2µ
g(p′) τ(E + iε) g(p)

with

τ(E + iε) =

0
@1− λ

2π2

∞Z

0

g2(p) p2 dp

k2 − p2 + iε

1
A
−1

, k2 = m E

g(p) =
1

p2 + β2
, τ(z)−1 = 1− (β + α)2

(β +
√−2µ z)2



HS eigenfunctions and eigenvalues

Define (for a given partial wave)

| gm(z) 〉 =
4π

λm (z)
V G0(z) |gm(z)〉, gm(r; E) ∼ exp(ikr)

r
r → ∞

〈gm|G0|gn〉 = −δmn, T =
X
m

| gm 〉 dm 〈 gm |, dm = − 1

4π

λm

1− λm

Figure 2: The HS expansion of T (z)



Near the pole z = z0

λ(z) = 1 + γλ(z − z0), γλ =
(

d λ(z)
d z

)

z = z0

and

T (z) =
4π

γλ

|g(z0)〉 〈 g(z0)|
z − z0



Example: the Hulthèn potential V (r) = −γ (exp(r/r0)− 1)−1

λm(k) =
2µ γ r2

0

m (m− 2ikr0)

For small E
λm(E + i0)− λm(E) = amE + ibEl+ 1

2

a b

Figure 3: Trajectories of λ(z) in the complex plane for some typical attrac-
tive potential: s-wave (a), p-wave (b)



Three body case. Faddeev equations

LS equation

T (z) = V + V G0(z)T (z), V =
X

i<j

Vij

for more than two particles is not of the type that can be solved directly by the
Hilbert-Schmidt method. The trouble can be expressed in a number of ways:

F The kernel [z −H0]−1V of the LS equation is not of the L2 type, even if the
interactions are well enough behaved to give an L2 two particle kernel

F The LS kernel contains disconnected graphs

���
a b c

Figure 4: Disconnected graphs in the three (a) and four-body (b, c) prob-

lems. In the last case there are two subsets of disconnected graphs corre-

sponding to partitions (ijk)(l) and (ij)(kl)



The expression for each connected graph contains the overall δ-function
expressing conservation of total momentum. This δ-function is
completely innocuous, since it can be factored out from the equations.
However, any disconnected graph contains the additional δ-functions
which are not conserved by the full interaction and hence can not be
factored out. These dangerous δ-functions do not disappear after
iterations and lead to the fact that the kernels are not of L2 type.

Without making no attempts at mathematical rigor, we consider below
the absence of δ-functions or their removing after iterations as the formal
criterium for completely continuous kernels. We can now formulate a
problem:

Can we rewrite the LS equations as a set of linear integral
equations with the kernels which are either connected or

become connected after some number of iterations?

We suppose that the interactions behave well enough to give a L2

two-particle kernel



Define

T α = Vα + VαG0(z)T (z), α = 12, 31, 23, T (z) =
X
α

T α(z)

These operators satisfy the equation T αG0 = VαG

T α = Vα + VαG0(z)
X

β

T β(z), β = 12, 31, 23

Rearranging terms, one finds

(1− VαG0(z)) T α = Vα + VαG0(z)
X

β 6=α

T β(z),

We multiply this equation by (1− VαG0(z))−1 from the left. Using

(1− VαG0(z))−1 V α = Tα,

one obtains the Faddeev equations

T α = Tα + TαG0(z)
X

β 6=α

T β(z),

T α(z) is the three body operator, while Tα(z) is the two-body operator. Both are

defined in the three body Hilbert space



The kernel of FE become connected after one iteration:

T 12(z) = T12(z) + T12G0(z)T31(z) + T12(z)G0(z)T23(z) + ...

The equivalence of Eqs.

T α = Tα + TαG0(z)
X

β 6=α

T β(z),

and

T α = Vα + VαG0(z)T (z)

follows from the fact that in the Faddeev methods all the transformations are

reversible. It may be not the case for other variants of many-body equations

suggested in the literature (P.Federbush (1966), C.Chandler (1978)).



The simple origin of the spurious solutions to a homogeneous equation ψ = Kψ is
the factorization property of the kernel 1− K (R. Newton, 1966). We demonstrate
the factorization with an example of the 3-body Weinberg equation

ψ = G0

X
α

VαG̃αV αψ, V α = V − Vα

G̃α = Gα − G0 = G0VαGα

It can be easily checked that
 
I − G0

X
α

VαG0V α

!
=

 
I+

X
α

G0Vα

! 
I−G0

X
α

Vα

!

Thus we have  
I +

X
α

GαVα

! 
I −

X
α

Vα

!
= 0



Therefore the Weinberg equation may have solutions of two types. The first solutions
satisfy the Shrödinger¨ equation

 
I − G0

X
α

Vα

!
= 0

at those energies at which H = H0 + V has an eigenvalue. Besides, solutions may
arise defined by  

I − Gα

X
α

Vα

!
ψ = χ 6= 0

with  
I +

X
α

Gα Vα

!
= 0

These solutions are not predicted by the Shrödinger theory and usually are called
spurious solutions
A factorization property does not guarantee the existence of spurious solutions,
however it makes their existence rather probable. In particukar Federbush has
suggested a very special model for which the homogeneous part of Weinberg
equations admits the spurious solutions in the first sheet of the complex energy plane.
Chandler has shown the existence of spurious solutions in the Federbush model for
many N-particle integral equations suggested in the literature.



Operators Tα are left-classified. In the four body problem, at least the kernels are
classified from both sides. Define

Mα,β
a = Vαδαβ + VαGaVβ , a = (ijk)(l) or (ij)(kl)

The operators Mα,β
a satisfy

Mα,β
a = Tαδαβ + TαG0

X

(γ 6=α)⊂a

Mγ,β
a

These equations can be written in the matrix form

0
B@

M12,12 M12,31 M12,23

M31,12 M31,31 M31,23

M23,12 M23,31 M23,23

1
CA =

0
B@

T12 0 0

0 T31 0

0 0 T23

1
CA +

0
B@

T12 0 0

0 T31 0

0 0 T23

1
CA

0
B@

0 G0 G0

G0 0 G0

G0 G0 0

1
CA

0
B@

M12,12 M12,31 M12,23

M31,12 M31,31 M31,23

M23,12 M23,31 M23,23

1
CA



Rewrite the last equation in the form
2
64

0
B@

1 0 0

0 1 0

0 0 1

1
CA−

0
B@

T12 0 0

0 T31 0

0 0 T23

1
CA

0
B@

0 G0 G0

G0 0 G0

G0 G0 0

1
CA

3
75×

×

0
B@

M12,12 M12,31 M12,23

M31,12 M31,31 M31,23

M23,12 M23,12 M23,23

1
CA =

0
B@

T12 0 0

0 T31 0

0 0 T23

1
CA

hence
2
64

0
B@

1 0 0

0 1 0

0 0 1

1
CA−

0
B@

T12 0 0

0 T31 0

0 0 T23

1
CA

0
B@

0 G0 G0

G0 0 G0

G0 G0 0

1
CA

3
75

−1

×

×

0
B@

T12 0 0

0 T31 0

0 0 T23

1
CA =

0
B@

M12,12 M12,31 M12,23

M31,12 M31,31 M31,23

M23,12 M23,12 M23,23

1
CA

This identity will be used in the derivation of the four-body equations



〈k,p |Mαβ(z)|k,p〉 = M(1)(k,p;k′,p′; z) (α = β) or M(2)(k,p;k′,p′; z) (α 6= β)

The function M(1) contains a term of the form t(k,k′; zp) δ(p− p′)

M̃(1,2)(k′,p′; k,p; z) = (zp = z − 3

4

p2

m
, zp′ = z − 3

4

p ′2

m
)

=
X

mm′
gm′ (k

′; zp′ ) dm′ (zp′ ) a
(1,2)
m′m(p′,p; z) dm(zp) gm(k; zp)

Figure 5: Definition of a
(1)
m′m(p′,p; z) (α = β) and a

(2)
m′m(p′,p; z) (α 6= β)



am′m (p′,p; z) = 2Um′m (p′,p; z) +

+2
X

m
′′

Z
U

m′m′′ (p′,p
′′
; z) dm′′ (zp

′′ ) am′′m (p
′′

,p; z) d3p
′′

Um′m (p′,p; z) =
gm′ (p1; zp′ ) gm(p2; zp)

z − 1
m

(p2 + p′2 + pp′)

p1 = |p +
1

2
p′|, p2 = |1

2
p + p′|, dm(z) = − 1

4π

λm(z)

1− λm(z)

Figure 6: Faddeev equations for am′m (z) = a
(1)
m′m (z) + 2 a

(2)
m′m (z). The elastic

scattering nd amplidude is Fnd = −πµnd
γ1

a11(p′,p; E + i0)



Since equation for the amplitudes am′m (z) has the resolvent form we can apply
again the HS method. For a given 3-body partial wave we define the 3-body
eigenfunctions and eigenvalues

|wn(z)〉 =
8π

ηn(s)
U(z) d(zp) |wn(z)〉

|wnz〉 =

0
BBB@

wn1

wn2

wn3

· · ·

1
CCCA U =

0
BBB@

U11 U12 U13 · · ·
U21 U22 U23 · · ·
U31 U32 U33 · · ·
· · · · · · · · · · · ·

1
CCCA

amm′ (p
′, p; z) =

X
n

gm′n(p′; z) ωn(z) gmn(p; z), ωn(z) = − 1

4π

ηn(z)

1− ηn(z)

Figure 7: HS expansion for the three-body amplitude



Four body integral equations

Consider one of the Faddeev equations for four particles

T 12 = T12 + T12G0(T 31 + T 23 + T 41 + T 42 + T 34)

T α (α = 12, 31, 23, 41, 42, 34) are four-body operators, T12 is the two-body
operator. Iterations of these equations still contain disconnected graphs

T 12 = T12 + T12G0T34 + T12G0T34G0T12 + ... b = (12)(34)

+ T12G0T31 + T12G0T31G0T23 + ... a = (123)(4)

Let us introduce three operators

T 12,123 = T12G0(T 31 +T 23), T 12,124 = T12G0(T 41 +T 42), T 12,34 = T12G0T 34

T αa = TαG0

X

(β 6=α)⊂a

T β

It is evident that

T 12 = T12 + T 12,123 + T 12,124 + T 12,34



In general case equations

T 12,123 = T12G0(T 31 + T 23), T 12,124 = T12G0(T 41 + T 42),

T 12,34 = T12G0T 34

are written as
Tαa = TαG0

∑

(β 6=α)⊂a

T β

Substitute for T β

T β = Tβ +
X

(b⊃β)

T βb

Then we obtain

Tαa = TαG0

∑

(β 6=α)⊂a

Tβ + TαG0

∑

(β 6=α)⊂a

∑

b⊃β

T βb

or, after rearranging terms,

Tαa − TαG0

∑

(β 6=α)⊂a

T βa = TαG0

∑

(β 6=α)⊂a

Tβ + TαG0

∑

(b⊃β) 6=a

T βb



2
64

0
B@

1 0 0

0 1 0

0 0 1

1
CA−

0
B@

T12 0 0

0 T31 0

0 0 T23

1
CA

0
B@

0 G0 G0

G0 0 G0

G0 G0 0

1
CA

3
75

0
B@

T 12,123

T 31,123

T 23,123

1
CA =

=

0
B@

T12 G0 (T31 + T23)

T31 G0 (T12 + T23)

T23 G0 (T12 + T31)

1
CA +

+

0
B@

T12 0 0

0 T31 0

0 0 T23

1
CA

0
B@

0 G0 G0

G0 0 G0

G0 G0 0

1
CA

0
BBBB@

P
b6=(123)(4)

T 12,b

P
b6=(123)(4)

T 31,b

P
b6=(123)(4)

T 23,b

1
CCCCA

The condition b ⊃ β is understood:

T 12,b = T 12,124, | T 12,34, T 31,b = T 31,314, T 31,23, T 23,b = T 23,234, T 23,14



Recall that in the derivation of the three body equations we had to calculate

(1− VαG0(z))−1 V α = Tα,

In the four-body case we have to calculate

2
64

0
B@

1 0 0

0 1 0

0 0 1

1
CA−

0
B@

T12 0 0

0 T31 0

0 0 T23

1
CA

0
B@

0 G0 G0

G0 0 G0

G0 G0 0

1
CA

3
75

−1

×

, ×

0
B@

T12 0 0

0 T31 0

0 0 T23

1
CA

In the lecture on the three body equations we have already derived

2
64

0
B@

1 0 0

0 1 0

0 0 1

1
CA−

0
B@

T12 0 0

0 T31 0

0 0 T23

1
CA

0
B@

0 G0 G0

G0 0 G0

G0 G0 0

1
CA

3
75

−1

×

×

0
B@

T12 0 0

0 T31 0

0 0 T23

1
CA =

0
B@

M12,12 M12,31 M12,23

M31,12 M31,31 M31,23

M23,12 M23,12 M23,23

1
CA



In the same way one derive
2
64

0
B@

1 0 0

0 1 0

0 0 1

1
CA−

0
B@

T12 0 0

0 T31 0
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T 12,123 = T̃ 12
a + (M12,31

a + M12,23
a ) G0 (T 12,124 + T 12,34) +

(M12,12
a + M12,23

a ) G0 (T 31,134 + T 31,24) +

(M12,12
a + M12,31

a ) G0 (T 23,234 + T 23,34)

T 12,34 = T̃ 12
b + N12,34

b G0 (T 13,123 + T 12,124) +

N12,12
b G0 (T 34,134 + T 34,234),

a = (123)(4), b = (12)(34)



The general form of the four-body FY equations:

Tαa = T̃α
a +

∑

(γ 6=δ)⊂a

∑

d⊃δ, d 6=a

Mα,γ
a G0 T δd

In contrast to the Weinberg equations, the kernels Mα,β
a are not

connected or almost connected ones. Indeed the diagonal components
Mα,β

a contain the pair T-matrices Tα. However, the δ-functions
corresponding to disconnected graphs are removed after two iterations.

The FY system of equations is of the Fredholm type and has an unique
solution (K.Hepp (1969))

Bound state equations

Ψαa =
∑

(γ 6=δ)⊂a

∑

d⊃δ, d 6=a

Mα,γ
a G0 Ψδd
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Figure 8: Jacobi momenta corresponding to the different partitions. α chan-
nel: partition a=(ijk)(l), β channel: partition b=(ij)(kl)

kij =
pi − pj

2
, pij,k =

pi + pj − 2pk

3
, qijk,l =

pi + pj + pk − 3pl

4
(α)

kij =
pi − pj

2
, pkl =

pk − pl

2
, qij,kl =

pi + pj − pk − pl

4
(β)

Jacobi momenta separate the center of mass motion and guarantee a KE operator

independent from angular variables. Other coordinates lead to strong angular

dependence and, as a result, to a very slowly converging series of partial waves.



In a system of identical particles

Ψij,ijk(kij ,pijk,ql) = Ψ1(kij ,pijk,ql)

Ψij,kl(kij ,pkl,qij) = Ψ2(kij ,pkl,qij)

 
Ψ1

Ψ2

!
=

 
K11 K12

K21 0

! 
Ψ1

Ψ2

!

Because a state must be even under the permutation of each two particles and of
two-particle clusters

Ψ1(k,p,q) = Ψ1(−k,p,q)

Ψ2(k,p,q) = Ψ2(−k,p,q) = Ψ2(k,−p,q) = Ψ2(−p,k,−q)



The integral operators Mα,β
(ijk)(l)

are expressed in terms of two functions

〈k,p,q |Mαβ(z)|k,p,q〉 = M(1)(k,p;k′,p′; z − 2

3
q2) δ(q− q′), α = β

M(2)(k,p;k′,p′; z − 2

3
q2) δ(q− q′), α 6= β

which are even in k, k′.
Analogously Nα,β

(ij)(kl)
are expressed in terms of N 1 and N 2

〈k,p,q |Nαβ(z)|k,p,q〉 = N (1)(k,p;k′,p′; z − 1

2
q2) δ(q− q′), α = β

N (2)(k,p;k′,p′; z − 1

2
q2) δ(q− q′), α 6= β

The functions M(1) and N (1) contain a term with δ(p− p′) of the form

t (k, k′; z − 3

4
q2) δ(p− p′) δ(q− q′)

or

t (k, k′; z − 1

2
q2) δ(p− p′) δ(q− q′)

This δ-function is removed after two iterations



We use the Dirac delta-functions to perform one of the momentum integrals, change
some variables and the symmetry properties of Ψ1 and Ψ2 to get

Ψ1(k,p,q) =

„
EB − k2 − 3

4
p2 − 2

3
q2

«−1

×
„Z

Ms (k,p;
1

2
p′ + K1,p′; EB − 2

3
q2) Ψ1(p′ +

1

2
K1, K2,q′) dp′dq′ +

ηP

Z
Ms (k,p;

1

2
p′ + P1,p′; EB − 2

3
q2) Ψ2(p′ +

1

2
P1, Q2,q′) dp′dq′

«

Ψ2(k,p,q) =

„
EB − k2 − p2 − 1

2
q2

«−1

×

2

Z
N s (k,p; Q1, p′; EB − 1

2
q2)Ψ1(p, P2, q′) dp′dq′

K1 =
1

3
q + q′ K2 = q +

1

3
q′, P1 = −2

3
q− q′ P2 = −q− 1

3
q′,

Q1 =
1

2
q + q′, Q2 = q− 1

2
q′



The integral kernels are

Ms(k,p;k′,p′; z) = M(k,p;k′,p′; z) +M(−k,p;k′,p′; z),

M(k,p;k′,p′; z) = M(1)(k,p;k′,p′; z) + 2M(2)(k,p;k′,p′; z),

N (k,p;k′,p′; z) = N (1)(k,p;k′,p′; z) + ηPN (2)(k,p;k′,p′; z)



At present, a variety of NN-potentials is available which fit the NN data with
magnificent accuracy. Beyond the longest range OPE part, the medium and short
range region is parametrized purely phenomenologically by the exchange of heavier
mesons and introduction of form factors. Modern NN-forces contain typically 40-50
parameters but describe NN scattering data with high precision up to 350 MeV.

Dictionary

F Separable potential with the dipole (Y) or exponential (E) form factors

F MT I-III, s wave phenomenological Malfliet-Tjon potential, contains two Yukava
terms, corresponding to the long range attraction and short-range repulsion,
R.A. Malfliet, J. Tjon, Nucl. Phys. A127 161 (1969)

F Argonne potential AV18, R.B.Wiringa et al. PRC, 51 38 (1995). The AV8′
interaction is derived from the AV18 interaction by neglecting the charge
dependence and the terms proportional to L2 and (L · S)2. This potential
consists of 8 parts (Vi are radial functions of Yukawa- and Wood-Saxon types):

V (r) = Vc(r) + Vτ (r)(τ · τ) + Vσ(r)(σ · σ) + Vστ (r)(σ · σ)(τ · τ)

+Vt(r)S12 + Vtτ (r)S12 (τ · τ)

+Vb(r)(L · S) + Vbτ (r)(L · S) (τ · τ) =
8X

i=1

Vi(r)Oi,

F Bonn potential CD Bonn (2000), R. Machleidt PRC 63 024001 (2000), Based
on meson exchange



Early calculations of the α-particle BE

Potential Method Bt Bα Bα∗ References

Separable Y HS -11.03 -45.73 -11.69 ITEP (1973)
Separable Y 2-dimensional eqs -11.05 -45.70 GL (1976)
Separable Y Bateman -10.43 -45.18 10.88 ITP (1976)
Separable E -9.82 –39.83 -25.90 -10.08 ITP (1976)
Separable G 2-dimensional eqs -8.99 -33.3 KS (1978)

MT HS -8.56 -29.6 Tjon (1975)
RSC HS -6.8 -25.80 Tjon(1978)

ITEP: IMN, E.S.Galpern, and V.N.Lyakhovitsky, Phys. Lett. B46 51 (1973)
GL: B.Gibson, D.R.Lehman, Phys. Rev. C14 685 (1976)
ITP: V.F.Kharchenko and V.P.Levashev, Phys. Lett. B60 317 (1976)
KS: H.Kröger, W. Sandhas: Phys. Rev. Lett. 40 834 (1978)
Tjon: J.Tjon, Phys. Lett. B50 217 (1975), Phys. Rev. Lett. B40 1239 (1978)



The expectation values 〈T 〉 and 〈V 〉 of kinetic and potential energies, the binding
energies Eb in MeV and the radius in fm

Method 〈T 〉 〈V 〉 Eb

p
〈r2〉

FY 102.39 -128.33 -25.94 1.485
CRCGV 102.30 -128.20 -25.90 1.482
SVM 102.35 -128.27 -25.92 1.486
HH 102.44 -128.34 -25.90 1.483

GFMC 102.30 -128.25 -25.93 1.490
NCSM 103.35 -129.45 -25.80 1.485
EIHH 100.78 -126.72 -25.94 1.486

F CRCGV: Coupled-rearrangement-channel Gaussian-basis variational

F SVM: The stochastic variational

F HH: The hyperspherical variational

F GFMC: The Green’s function Monte Carlo

F NCSM:The no-core shell model

F EIHH: The effective interaction hyperspherical harmonic method





Figure 9:
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Figure 10: The modern Tjon line: α particle vs 3H binding energy
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Figure 11: Three nucleon interaction



Scattering problem. Doubly classified four-body operators

Define (O.A.Yakubovsky, PhD thesis, 1967)

W αa,βb = Tα G0 Tβ(1− δαβ) +
X

γ 6= α, γ⊂a

X

(δ 6=β)⊂a

Tα G0 MγβG0 Tβ

X

ab

W αa,βb = Mαβ − Tαδαβ

The set of equations for W αa,βb is

W αa,βb = M̃αβ
a δab + TαG0

X

(γ 6= δ)⊂a

X

a⊃δ, d6=a

Mα,γ
a G0 W δd,bβ

with the free term
M̃αβ

a = Mαβ
a − Tα δab.

W αa,βb is the sum of the almost connected graphs and

W̃ αa,βb = W αa,βb − M̃αβ
a

is the sum of the connected graphs.

W̃ α′a′,αa = M̃α′α
a G0 M̃δ,α

a (1− δab) +
X

(γ 6= δ)⊂a

X

a⊃δ, d6=a′
Mα,γ

a G0 W̃ δd,αa



W̃ βb,αa = M̃βγ
b G0 M̃δ,α

a +
X

(γ 6= δ)⊂b

X

d6=b

Mβ,γ
b G0 W̃ δd,αa



We have 144 operators of the type W̃ α′a′;aα and 72 operators of the type W̃ βb;aα.
In a system of identical particles the number of amplitudes is strongly reduced

The matrix elements of the operators W̃ α′a;aα and W̃ βbα and be expressed in terms
of 7 amplitudes Ai (i = 1, · · · , 7) and four amplitudes Bi (i = 1, · · · , 4).

Operators W̃ αa; α′a′ Examples Matrix elements

α′ = α; a′ = a W̃ 12,123; 12,123 A1

α′ 6= α; a′ = a W̃ 12,123; 31,123 W̃ 12,123; 23,123 A2

α′ ⊂ a; α ⊂ a W̃ 12,123; 31,314, W̃ 12,123; 23,234 A3

α′  a; α  a′ W̃ 12,123; 41,314, W̃ 12,123; 24,243 A†4
α′  a; α  a′ W̃ 12,123; 43,314, W̃ 12,123; 34,342 A†5
α′ = α, a′ = a W̃ 12,123; 12,124 A6

(α′ 6= α) ⊂ a W̃ 12,123; 14,142, W̃ 12,123; 24,241 A7

† Amplitudes A4 and A5 differ in that the pairs α, α′ have a common particle in the
first case, and have no one in the second



We have the set of 11 equations relating Ai and Bi. We write down two typical
equations of this set

A1 = 2M2G0A6 + 2[M1 + M2]G0A7 +

ηPM2G0B1 + 2ηP [M1 +M2]G0B4,

B1 = ηP 2N (2)G0M̃(1) + 2N (2)G0(A1 + A6) + 2N (1)G0A4

Equations of this type still contain too many amplitudes. A further simplification is
possible, because the quantities with which we associate a physical meaning are not
the amplitudes Ai, Bi themselves, but their linear combinations

A = A1 + 2A2 + 2(A3 + A4 + A5) + (A6 + 2A7)

B = B1 + B2 + 2B3 + 2B4

A = 2MG0M̃ + 2MG0A + 4ηPMG0B
B = 2NG0M̃ + NG0A

M = M(1) + 2M(2), N = N (1) + ηPN (2)



Figure 12: Pictorial definition of the amplitudes Ann′ and Bnn′

Fnt(E, cosθ) = −3πm

4 γη
A11(qf ,qi; E + i0)

Fnt→dd(E, cosθ) = −π
√

µi µf√
γηγζ

ˆ
B11(qf ,qi; E + i0) + B11(−qf qi; E + i0)

˜



Figure 13: FY equations for Ann′ (3 + 1 → 3 + 1) and Bnn′ (3 + 1 → 2 + 2)

Figure 14: Iteration series for the amplitudes A and C



Figure 15: FY equations for Cn n′ (2 + 2 → 3 + 1) and Dn n′ (2 + 2 → 2 + 2)

Fdd→nt(E, cosθ) = −π
√

µntµdd√
γηγζ

`
C11(qf ,qi; E + i0) + C11(qf ,qi; E + i0)

´

Fdd→dd(E, cosθ) = −πµdd

γζ

`
D11(qf ,qi; E + i0) + D11(−qf qi; E + i0)

´



Four nucleon scattering. Applications

The theoretical description of the A=4 scattering states constitutes a serious
challenge for the existing NN interaction models. The reason for that is not purely
technical, but lies rather in the richness of the continuum spectrum itself. The 4N
continuum spectrum exhibits a rich variety of resonances and thresholds sufficiently far
from the zero energy region that cannot be determined by the low energy properties.
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Figure 16: Isosinglet resonances and thresholds in 4N continuum spectrum
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Figure 17: Spectra of 4N bound and resonate states



n-3H, p-3H, and p-3He scattering lengths calculated using different interaction models

MT I-III AV 14 AV18+UIX

Jπ = 0+ Jπ = 1+ Jπ = 0+ Jπ = 1+ Jπ = 0+ Jπ = 1+

p3He 11.5 9.20

p3H -63.1 5.50 -13.9 5.77 -16.5 5.39

n3H 4.10 3.63 4.28 3.81 4.04 3.60

σnt(0) = 177mb (MT I− III), σnt(0) = 194mb (AV14),

σnt(0) = 174mb (AV18 + UIX)

The comparison with the experimental cross section σ(0) = 170± 3 mb from shows
that the AV14 potentials fails in describing the zero energy cross section as it fails in
reproducing B3 and B4, the three- and four-nucleon binding energies

Unlike the n-d case, the 4N scattering states call for three nucleon interaction from

the very beginning



MT I-III potential was shown to be very successful in describing total and differential
cross sections at the energies bellow nnd threshold. Situation is less obvious for
realistic potentials, which require much larger partial wave basis to obtain converged
results
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Figure 18: Predictions of σtot(n3H) for various interactions and experimental data



0.1 1.0
T lab (MeV)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

σ 
(b

)

total with TNI
total without TNI
exp.

S
P

Figure 19: S and P waves in n3H cross section
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Figure 20: n3H differential cross section
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Figure 21: Differential cross sections versus centre-of-mass angle for p3He at Ecm =
4.1325 MeV
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Figure 22: Theoretical n+3H total cross sections compared with experimental data



Analysis of p+3H scattering is complicated by the existence of the first 0+ excitation
of 4He located at ER ≈ 0.4 MeV above p+3H with the width Γ ≈ 0.5 MeV . By
properly taking Coulomb interaction into account, thus separating n+3He and p+3H
thresholds, it is possible to place the 4He virtual state in between. However unlike in
the other 4N systems, MT I-III predictions for as(p3H) and σ(E, θ = 120◦) are in
disagreement with data.
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Figure 23: Energy dependence of p3He elastic differential cross sections at 120◦
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Figure 24: Vector analyzing power Ay versus θCM for ~p+3He reaction at
Ecm = 1.2 MeV and 1.69 MeV respectively. The solid lines (dashed lines) cor-
respond to calculations with AV18 alone, the dashed lines to AV18+ Urbana IX. Both
calculations uncover large disagreements with experiment


