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Theoretical formulation:
Coordinates: (x,y) are mass scaled Jacobi coordinates

Ti; 1s the vector connecting particle ¢ and j

2 .2 m;mg
T Tk m(miemy)

_ 7“2 mj (mi+my,)
y ik m(mi+my+m;)

1
m(m;+mp+m;)

2

0P =2+ qy? =

Q = {Q,,Q,, a}, ie. directions of (x,y) and tana =

<R

Complex scaling: p — pexp(if)

Adiabatic hyperspherical expansion:

Choose interactions and solve Faddeev equations for each p
Compute angular eigenvalues A, and eigenfunctions {®,(p, 2)}

The three-body bound state or resonance wave function ¥ is:

\Ij(wvy>:2nfn(p)q) (p7 )
(0) (61" (0, ) + 65" (p, Q) + 5" (p, V)

Solve radial equations: f,(p) and complex energy eigenvalues
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Figure 1: The real parts of the four lowest adiabatic effective potentials

as functions of p for the 12C resonances with J™ as indicated on the

figure. ;
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Figure 22 The real and imaginary parts of the 2C resonances after
rotation by the angle 6. 4



Table 1. J™; ER ¢zp (MeV); ' ezp (keV); Erin (MeV); Irin (keV); 3-body
potential parameters: S (MeV); b (fm); rotation angle (rad).

JT ER,emp FR,ea:p ER,th FR,th S b 7
0t | -7.25 bound -6.113 bound -39 5 0.0005
0.38 85x107% 0.318 5.97x 1073 -39 5 0.0005
4.037 0.922 -31 ) 0.1
1~ 3.97 315 3.969 432.8 -6.8 5 0.1
3” 2.37 34 2.363 71.6 -1.7 5 0.075
4+ 6.81 258 6.808 361.3 -26 5t 0.1
3.633 300.0 -26 3 0.1
2T | -2.875 bound -2.875 bound 215 5 017
3.88 430 1.730 387.7 -21.5 5 0.17
4.690 1.459 -21.5 &5  0.17
7.057 3.051 -215 5 0.17
2- 4.595 260 4.464 464.1 7.3 5 0.1
6.08 375
1+ 5.43 18.1 - - -154.5 5
7.84 43.6 - - -141.5 5

Figure 3: Experimental and computed energies and widths of 2C
resonances with J7.
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Figure 4: The real parts of the three lowest adiabatic radial wavefunc-
tions as functions of p for the ?C resonances with J”.

\Ij(m7y) = Xp fn(p)q)n(p? Q) 6

Each fall off exponentially while oscillating around zero
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Figure 5: T'he real parts of the three lowest adiabatic radial wavefunc-
tions as functions of p for the *C resonances with J™.

‘I’(QB, y) = 2n fn(p)q)n(pa Q)

Each fall off exponentially while oscillating around zero
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Figure 6: The partial wave decomposition of the 12C resonances with
J™ as indicated on the figure shown as function of p for the domi-
nating adiabatic eigenvalue.
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Figure 7: The partial wave decomposition of the 2C resonances with
J™ as indicated on the figure shown as function of p for the domi-
nating adiabatic eigenvalue.



Table 1: Components included in the three-body calculations have
Knar = 20 except those specified here. The left part refers to the
components in the first Jacobi set (& connecting the two nucleons),
and the right part to the ones in the second and third Jacobi sets
(x connecting the alpha-particle and one of the nucleons).

1%t Jacobi set 27 and 3¢ Jacobi sets
Mi;oN a._CU_::.N
kyoz yN
by by L sy sy Kpae|le Uy L sz sy K
0O 2 2 0 0 180 |0 2 2 1 / 2 0 44
2 0 2 0 0 18 |0 2 2 1 / 2 1 44
1 1 1 1 1 180 2 0 2 1 / 2 0 70
1 1 2 1 1 64 (2 0 2 1 / 2 1 44
2 2 2 0 0 90 1 1 11 / 2 1 240
1 3 2 1 1 42 1 1 21 / 2 0 240
3 1 2 1 1 42 1 1 2 1 / 2 1 44
2 4 2 0 0 5 |2 2 1 1 / 2 1 32
4 2 2 0 0 H4 2 2 21 / 2 0 50
4 4 2 0 0 68 2 2 21 / 2 1 42
1 3 2 1 / 2 0 42
1 3 2 1 / 2 1 42

Notice Jacobi coordinates
Each of the Faddeev components are partial wave expanded
Rather large K., in each of these many partial waves

10
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Figure 8: The real parts of the lowest 8 angular eigenvalues (left) and
corresponding adiabatic potentials (right) as functions of p for the
2" states in °He (*He + n + n). The scaling angle is # = 0.10.

Effective hyperradial potentials
Attractive region and a barrier

Resonance properties:

Energy determined by attractive pocket

Width determined by the barrier

Large-distance behavior determines final state energy distribution
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Figure 9: The coupling potentials between the four lowest adiabatic
levels for @ = 0.10 shown as functions of p for ®°He(2"). The first and
the fourth levels have similar quantum numbers but approach the
K = 2 and 4 levels, respectively. To show the first (P) and second
(Q) order coupling potentials in the same units (fm™!) we multiply
Q) by p. (The energy unit is restored in the coupling potentials by

including the omitted factor, i.e. B*Q/(2m), h*P/(2m)d/0p).

Couplings determine relative size of radial wavefunctions
Fall off at intermediate distance

Numerical stability at large distance

Compromise between:

lowest (adiabatic) state and maintaining the structure

12
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Figure 10: The lowest four radial wavefunctions (left) and their relative
sizes (right) for @ = 0.10 as functions p for the ®He(2") resonance.

U(z,y) =%, fulp)Pulp, Q)

Each fall off exponentially while oscillating around zero
Relative size at large distance is stable
Determine energy distribution
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Figure 11: The energy distributions of neutrons and a-particles af-
ter decay of ‘He(2%) for § = 0.10. The three-dimensional plot
show the dependence on p with inclusion of 8 adiabatic wavefunc-
tions. The maximum energies are (mg, + my,)/(mq + 2m,) Ey and
2my, [ (mq+2my,) Ey for the neutron and the a-particle, respectively.
Here Ej is the energy of the decaying resonance.

Kinetic energy distribution of third particle:
P(k?) o< P(cos® a) o< sin(2a) S dQ,dS2y ¥ (p, o, Q, Q)|

Neutrons peak at intermediate energy

a-particles peak at large energy

Two neutron go together, not a-neutron against neutron
Virtual neutron-neutron state is essential

14
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Figure 12: The energy distribution of the a-particle after decay of the
2"-resonance in ®He. The scaling angle is @ = 0.10 and p = 75 fm
where convergence is reached. The points are extracted from the
measurements in [8]. Contributions from the lowest 4 adiabatic po-
tentials are shown individually.

Old data o .
Contributions from several adiabatic potentials

Interference is important

15
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Figure 13: The energy distribution of the neutrons after decay of the
2"-resonance in ®He. The scaling angle is § = 0.10 and p = 75 fm
where convergence is reached. The points are extracted from the
measurements in [8]. Contributions from the lowest 4 adiabatic po-

tentials are shown individually.

No data

Same resonance wavefunction as for a-particle
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Figure 14: The lowest adiabatic potentials W,(p) for the Li(17)

halo nucleus within the three-body °Li+n+n model with interac-
tions from [7]. The n-core and n-n scattering lengths are a,. ~
anp ~20 fm. The inset shows the lowest hyper-radial resonance
function with its large distance asymptotics — the Hankel function.
The complex scaling angle # = 0.15, the resonance angle 8z = 0.12
corresponds to the resonance energy of about 0.4 — 0.1¢ MeV.

Large scattering length
Decreasing and oscillating radial function

17
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Figure 15: The energy distributions of the fragments - the core, Li,
and the neutrons - in the decay of a three-body resonance 'Li(17)
calculated in the three-body °Li + n + n model with only s-wave
n-core interactions (scattering length a,. = 50 fm). The different
curves are calculated with different p,,,, and different numbers of
adiabatic channels N to illustrate the convergence.

Schematic model

Only s-waves and large neutron-core scattering length
Lowest adiabatic function is very accurate

Very stable against large variation of g4

Core distribution peaks at intermediate energies
Neutron distribution has a low and a high energy peak
Mechanism is neutron emission, high energy

Then neutron-core stick together, low energy neutron

18
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Figure 16: The energy distributions of the fragments - the core, Li,
and the neutrons - in the decay of a three-body resonance 'Li(17)

calculated in the three-body °Li 4+ n + n model with s-wave n-core
interactions (scattering length a,. ~ 50 fm), and an s-wave interac-
tion in the n — n subsystem (scattering length a,, = a,. ~ 50 fm).
The different curves are calculated with different p,,,, and different
numbers of adiabatic channels /V to illustrate the convergence.

Schematic model

Only s-waves, and large neutron-neutron and neutron-core scatter-
ing length

Lowest adiabatic function is very accurate

Very stable against large variation of g4

Core distribution gets new peak at high energy

Neutron distribution gets a new peak at intermediate energy

Two coherent decay mechanisms: Neutron emission, high and low
energy neutrons, intermediate core energy

Core emission, two neutrons stick together

Core energy is maximum, neutron energy is intermediate

19
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Figure 17: The energy distributions of the fragments - the core, ?Li,
and the neutrons - in the decay of a three-body resonance 'Li(17)
calculated with interactions from [7] where the n-core and n-n scat-

tering lengths are about 20 fm.

Realistic interactions reproducing all other known ''Li properties
All three scattering lengths now about 20 fm
All peaks from schematic model remains

Trace of Efimov effect
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Figure 18: Real parts of the lowest 10 angular eigenvalues (left) and
their corresponding adiabatic potentials (right) as functions of p for
the 2"-resonance in °Be. The scaling angle is § = 0.15. The dashed

line is the estimated behaviour at large distances for the lowest an-
gular eigenvalue.

The %He analog 2™-resonance in *Be

Only difference is Coulomb

Small p: Same structure as for °He

For large p:

Angular eigenvalues: linear in p, Potentials: 1/p
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Figure 19: The fraction of the dominating components in the angular
eigenfunction for the three lowest adiabatic potentials as function
of p for %Be (2%), see Fig. 1. The quantum numbers are as given
in table 1. Thick lines: x refers to the two-proton system and y to
its center of mass motion relative to the a-particle. Thin lines: x
refers to the proton-a system and y to its center of mass motion
relative to the other proton.

Partial wave decomposition of angular wavefunction
Strong variation from small to large distance

First eigenvalue:

Proton-proton s-wave dominates at small distance
Proton-proton s and d-waves are comparable at large p
a-proton p-waves dominate at large distance
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Figure 20: The absolute values of the coupling potentials between
the three lowest adiabatic levels for the 2"-resonance in “Be (thick
curves 6 = 0.15 rads) as functions of p, and the corresponding iso-
baric analog states in °Li (thin curves 6 = 0.10 rads).

Couplings determine relative size of radial wavefunctions

Fall off at intermediate distance
Numerical stability at large distance
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Figure 21: Left: Radial wave functions corresponding to the three
first adiabatic potentials for the 2"-resonance in ®Be. The real and
imaginary parts are shown by the thick and thin curves, respec-
tively. Right: Absolute values (thick curves) and the real parts
(thin curves) of the ratios between the radial wave functions. The
probability distribution has for each p been normalized to 1 as func-

tion of a.

U(z,y)

= 2n fn(p)(bn(pa Q)

Each fall off exponentially while oscillating around zero
Relative size at large distance determine energy distribution
Numerical stability is not obvious
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Figure 22: The probability distribution for the 2™-resonance in °Be in-
cluding the lowest 10 adiabatic potentials as function of the hyper-
radius p and hyperangle a related to the distance by r;; o< psin «,
i.e. the distance between either the one proton and core 7. (right)

or the two protons 7, (left).

Structure of total resonance wavefunction

Vary strongly from small to large distance

Stable at larger distance

Much better than indicated by the first radial wavefunctions
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Figure 23: Kinetic energy distributions of protons (right) and a-
particles (left) after decay of the 2"-resonance in °Be. The three-
dimensional plots show the dependence on p with inclusion of 10
adiabatic wave functions as function of cos? @, i.e. the kinetic en-
ergies L, , are in units of their maximum values E(()Z;““;) given by
(ma +my)/(mg + 2my,) Eg and 2m,,/(m, + 2m,) Eg for the pro-

ton and the a-particle, respectively, where F'y is the energy of the
decaying resonance.

Kinetic energy distribution of third particle:

P(k2) oc P(cos”® a) o< sin(2a) f dQ,dS2y [V (p, av, Oy, Q)|
Protons peak at intermediate energy

a-particles with broad peak tilted towards large energy

Coulomb is coupling a lot and broadening distributions
Virtual proton-proton state is not present or very weak
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Figure 24: Projections of kinetic energy distributions for °Be-decay.
Thick curves: Projection of the « (left panel) and proton (right
panel) kinetic energy distributions Fig.(23) on the E, ,/ EC(],’;)““"”) =1
plane. They are then the profile originating from the maximum val-
ues of the energy distribution for each value of p. The thin curves
are the same profile but when respectively only the first adiabatic
term (solid), only the second adiabatic term (dashed), or only the
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third adiabatic term (dot-dashed) is included in the calculation.

The kinetic energy distribution is redistributed with p
The total distribution is much more stable (thick curves)
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Figure 25: The kinetic energy distribution of the a-particle (upper
part) and the proton (lower part) after decay of the 2*-resonance
in 9Be. The scaling angle is § = 0.15 and the two sets of curves are
for p = 75,95 fm. The points are extracted from the measurements
in [8]. Contributions from the lowest adiabatic potentials are shown
individually.

Old data for a-particle
Contributions from several adiabatic potentials
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Figure 26: Real parts of the lowest 10 angular eigenvalues (left) and

their corresponding adiabatic potentials

(right) as functions of p for

the 27-resonance in %Li. The scaling angle is @ = 0.10. The dashed
line is the estimated behaviour at large distances for the lowest an-

gular eigenvalue.

The He analog 2 -resonance in Li
Only difference is Coulomb

Small p: Same structure as for °He

For large p:

Angular eigenvalues: linear in p, Potent
One more state:

ials: 1/p

a-deuteron structure, eigenvalue as —p?, potential to constant
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Figure 27: The fraction of the dominating components in the angular
eigenfunction for the three lowest adiabatic potentials as function of
p for °Li (2%). The quantum numbers are as given in table 1. We
omitted the almost decoupled lowest eigenfunction of deuteron-a
character. In the second Jacobi set (thin lines) the z refers to the
proton-a system and y to its center of mass motion relative to the
neutron. In the third Jacobi set (thin+circle lines) the x refers to
the neutron-a system and y to its center of mass motion relative to

the proton.

Partial wave decomposition of angular wavefunction
Strong variation from small to large distance

First eigenvalue:

Proton-proton s-wave vary but dominates at all distances
Proton-proton p-wave increases with p, isospin 0 increase with p
a-proton d-wave dominates at large distance
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Figure 28: The fraction of the dominating components in the angular
eigenfunction for the three lowest adiabatic potentials as function
of p for SLi (2%). The same as the previous figure for the Argonne
potential.

First eigenvalue:

Proton-proton p-wave increases with p, isospin 0 increase with p
Much larger basis at large distance changes numerical values but
maintain the picture. Second lambda remains as for p ~ 50 fm.
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Figure 29: Left: Radial wave functions corresponding to the three
first adiabatic potentials for the 2*-resonance in %Li. The real and
imaginary parts are shown by the thick and thin curves, respec-
tively. Right: Absolute values (thick curves) and the real parts
(thin curves) of the ratios between the radial wave functions. The
proba})ility distribution has for each p been normalized to 1 as func-
tion of a.
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Each fall off exponentially while oscillating around zero
Relative size at large distance determine energy distribution
Numerical stability is established
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Figure 30: Kinetic energy distributions of protons (upper-right panel),
neutrons (upper-left panel), and a-particles (lower panel) after de-
cay of the 2" -resonance in %Li corresponding to that of Fig. 10. The
three-dimensional plot show the dependence on p with inclusion of

10 adiabatic wave functions. The maximum energies E&ﬁ“j) are

(Mo + my) /(Mg + my + my)ER, (Mg + my)/(ma +my, +my,)Eg
and (my,+m,)/(mqy~+m,+m,)Eg for the neutron, the proton, and

the a-particle, respectively, where Eg is the energy of the decaying
resonance.

Kinetic energy distribution of third particle:

P(k;) o< P(cos” a) oc sin(2a) S dQ,dS2y [V (p, cv, Q, Q)|
Protons peak at intermediate (higher) energy

Neutrons peak at intermediate (lower) energy
a-particles with broad peak towards large energy
Neutron and proton tend to go together

Virtual neutron-proton state is active
Coulomb is broadening distributidns
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Figure 31: Projections of kinetic energy distributions as functions of
p for OLi(2"). Thick curves: Projection of the o (left panel) and
proton (right panel) kinetic energy distributions (Fig. 10) on the

E,,/E! m“x = 1 plane. They are then the profile originated by the

max1mum values of the energy distribution for each value of p. The
thin curves are the same profile but when only the first adiabatic
term (solid), only the second adiabatic term (dashed), or only the
third adiabatic term (dot-dashed) is included in the calculation.

The kinetic energy distribution is redistributed with p
The total distribution is much more stable (thick curves)
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Figure 32: The kinetic energy distribution of the a-particle (upper
part), the neutron (middle part) and the proton (lower part) after
decay of the isobaric analog 2-resonance in °Li. The scaling angle
is @ = 0.10 and the two sets of curves are for p = 75,95 fm. The
points are extracted from the measurements in [§]. Contributions
from the lowest adiabatic potentials are shown individually.

Old data for a-particle exist in another frame
Contributions from several adiabatic components
Protons peak at intermediate (higher) energy
Neutrons peak at intermediate (lower) energy
a-particles with broad peak towards large energy
Neutron and proton tend to go together

Virtual neutron-proton state is active

Coulomb is broadening the distributions
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CONCLUSIONS

1. Three-body decay of many-body resonances

2. A model working in practice

3. Energies must be artificially adjusted as in a-decay

4. Width is estimated as hyperspherical barrier penetrability

5. Asymptotic wavefunction behavior determines the
final state energy distributions

6. Asymptotics are established at intermediate distances
where basis size is manageable

7. Large scattering lengths can be handled, Efimov effect
8. Coulomb can be handled in the cases investigated

9. Isospin mixing is a dynamic effect occurring outside
the range of short-range interactions
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DIFFERENCES TO GRIGORENKO ET AL

1. The spin dependence of the proton-core interaction in '"Ne
computations is in conflict with the mean-field spin-orbit interac-
tion, i.e. the valence d3/, and ds/, states can not be independently
populated, only specific combinations. Same problem in ?Mg and
45Fe. Maybe corrected later on.

2. The hyperspherical method with only one Faddeev component
is used, i.e. it is not possible to describe (i) Efimov effect, (ii) close
to Efimov structure, (iii) two simultaneous 2-body substructures,
(iv) one 2-body resonance unless, as he sometimes does, allow this
structure as a variational degree of freedom.

3. The hyperspherical method has rather small Kmax ~ 20—25.
With three Faddeev components we need at least K'max ~ 100 —
150 with only the short range interaction. The Coulomb interaction
and the unavoidable couplings at large distances does not reduce
the required basis size.

4. The three-body interaction is p~ at large distance, i.e. excatly
of the same form as the effective hyperradial potentials. This should
not be necessary if the proper components are accurately included.
Instead this interaction should be of much shorter range in a three-
body coordinate, e.g. exponential or Gaussian.
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