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Description of the problem
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_|_
A" o 2 BY O 3
Hamiltonian of the system:

3

H = Ho+Vy(xa) + 5 Vo (x)
v=1

3
Ny
= =Dy — Dy, + X_1 + V;Vv, ny > 0. (1)



Xa = CapXp + SupYp (2)

Ya = —SapXp + Capyp- (3)
The coefficients are given in terms of the particle massgsy = 1,2, 3,
as

MMy 1/2

= | mem)mgtmy)| “

Saup = Epa(1—Chp)™?, (5)




Schidinger equatiot§W = EW

n
Hg = —ly, =Dy + _17
X1

admits an analitical solution
W(X,P) = Lﬁ’l?l(xl) L/—’&(Yl),
where
Y, (X1) =
= (2m) 32 1e ™20 (L4 iy D(—iyi; 1:ik1&1).

Here,& =xq —x1-K1, ya = n1/2kq is the Sommerfield paramet@r(a; b; )
the confluent hypergeometric function, dng) the Gamma function.

W2 (y1) = (2m)~3/2ghaPr.

It represents the normalized plane wave describing the free motion o
particle 1 relative the center of mass of the gair3).
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Because of the assumption > 0, the set{ Lpfl : Lpgl} constitutes a basis
In three-particle space which is complete, orthogonal, and normalized tc

o-functions. With its help we construct a unitary three-body operggr
which acts as

FG(X) = [ dP Y (xa) 45, (Y1) G(P) ©

It effects a so-called Coulomb-Fourief” ) transformation
The%.%# transform of the Hamiltoniakl separates into two terms,

3
H = FHFc=T+Y ¥ (7)
v=1

The kernel of the first tern¥ := .Z{Hy+ VL) .%¢ is easily seen to be
T (P,P) =P?6(P —P), (8)
whereP? =k +p% (= k2 +p2 Vv).



The ¥.7# -transformed short-range potentials
Vo = FNgFc (9)
act as integral operators with kernels

%(P/7 P) — \71( /17 kl) 5(p/1 - p1)7

VG(P/’ P) — ‘Sal‘_s\’]a (pl_ p1> >
Sar1

x ZS(PLP), o =2,3.



Here,
Ga(kka) = [ dxa WS (xa)Vaxa) i () (10)

IS the short-range potential of subsystem 1 in the “Coulomb representa
tion”,

~ dXa ik o
Va(k) :/(27_[)39 o Va(xa) (11)
IS the ordinary Fourier transform ®f, (x4 ), and
ZC(P,P) = / dxy €T PP X s () Y (). (12)
1

Moreover, 1, IS given in terms of the elements of the kinematic rotation
matrix asty := Cq1/Su1.



Representation of the kernel?; in associated configuration space

To present the kernel; In associated configuration space we need to
calculate an inverse Fourier transform

Yo (X, X") = FoVoF

(2m)" / dk, / dk’. / AP, / dp., V(PP
R3 R3

|<ka Xa>el<k’ |<pa YOr>e|<paaYa>
9

where
Yo (P, P) ~Vy (kg — K)o (K1, K)) 0 (Pa —P,), o =2,3.



The coefficiente (k1,k’;) described as

o (kg,KY) = (2ky)™(2Ky) M (L+iy) (1 — i) %

sinh{J(y1— ;) } o 1+ < kq, k>
X Fo| —iv, iy, ’ .
g(yl—)/l) o1 i )/1 5
We know also N
kl — Calka — Sa1Pa, Yi—= 2_k17

N
kll = Calk;{ — Sa1Pa, )/1 = 2_k’1’
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After integration overdpy,, instead of the set of three independent vari-
ables

{ka,k;,pa}
we introduce the new set of three independent variables
{qa7qgapa}7
where
qa:ka_%paa q/a:kix_%pa-

Ca1 Ca1



In new variables N
Va(X, X)) = FoVeFl =

= (2m)° /R ,dda /R ,dqg depa\“/a (Ga — Og) 7 (Ca10lar; Carlly) X

. . 1
Xe—|<qa,xa>e|<qg, Xl > e—lc—1<pa yi-y1>

21T
X / dggq / dogVa (Ga — 0y) 47 (Ca1Ga; Ca1dy) X
R3 RS

@ 1<UaXa>d <dg Xg>

_ ('C“l‘)36<y1—ya>x

11
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In new variables
1 1

— L / ’ k::'——— %_ /
p fz(qa o) fz(qa o)
we use the fact, that potential depends on the variabldy. \We use also
that with special properties:

a(p,k)  — 1

K—oo, p<R<

o (p,k) — 1.

p—0

Finall
’ Yo(X,X) = F VTt =

_ (';“;|>35(y1—y’1) [,d0% (p) [ Kl (p,k) ~ 1]

_ 1 k—px
X e \/§<k+paxa>e\/§<k paxa>_|_

+Ca1l?3(y1 — Y1) O (Xa — Xy )V (Xa).
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Sincey; = C41Yq + Sa1Xa, the second asymptotic term appears as

O(Ya = Ya)O(Xa —Xg)Va (Xa)
and describes the asymptotic behavior of transformed pair potential ir
paira = 2,3.
The first term reflects the complicated structure of transformed initial pair
potential at small distances.
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Conclusion

We proved, that by Coulomb Fourier transformation we eliminated the
long-range Coulomb interaction from the Hamiltonian and preserved the
asymptotic structure of other pair potentials.
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Derivation of the "Universal integral”

We calculate first an expression for the kernel of the potential in pairs,
which contain a neutral particle.

27_[ /R3dX /dexl/ dyl/ dyll.l,lc Xl,kl

X (X, K EYHPLe VP 5y — ;) 3(Xa — X )V (Xa)-

Instead one set of independent variableg y;} we choose another one
{X1,Xq }, where

Va

Xa = Cq1X1+ Sg1VY1.



16

The Jacobian of one-dimensional transformation

1S
J(N:].) _

Since it will be valid in each dimension, the t

Xa = Cq1X1 + Sg1Y1

0%
0X:|_
an

2%

y1
0 Xa

0X1

oy1

1 O

N Ca1 Sa1

IS the power three of one-dimensional one

The same will be valid for the primed coordinateg, X/, }-

= Sa1.

Nree-dimensional Jacobian
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We also take into account that

Vg = ! 4 Saly
a Sy1 1 Sy1 as
and consequently
1 Ca1
Ya y&z—g(xl—X&Hé(xa Xa)

It means, that
/ / / Xl_X,l
5()(0! _Xa)é(ya _ya) — 5(XC¥ _Xa)5 —

= |Sa1[°0(Xa —Xg) & (X1 —X}).
Integrating over the primed coordinates, we derive

YalPP) = 2n /dexlf dxq We(Xa, K1) X

INAS 1<Xa p1—p’> —IS—1<X1 p1—p7>
X YL (Xq, K7 )e e V (Xq).
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Integrating ovedx, we use the separation of variables and the definition
of the Fourier transform

P1—P1 1 s <Xa,p1-Pp>
V, = dx €S 1"V (Xq).

) ( Su1 ) (2m)3 Jre " (Xar)
Therefor we finally derive an expression

VQ(P,, P) — ‘Sal‘_g\’]a (pl_ pl) >
Sa1

1 _
x| dxae(xa, Ka) g (xa, ke sar PP
R



Consider the limit casen = Z;7,e*\/21 — 0.

Then |
LIJC(Xla kl) — (27T) _3/ze|<X1,k1>’

n—

which consequently means
a(P',P) = 8(Pa —Pg)Va(Ka —Kg)-

Coming back to the main expression, we finally proved, that

”//a(P’,P) = \Sal\_3\70, (pl_ pl) X
Sa1

x L2 (P,P), a =23

19
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Evaluation of analytical expression for the "Universal integral” out-
side of vicinities of singularities

Has been studied in atomic physics by H.Bethe, and A.Nordsieck in 1950
th and later by M.Gravielle and J.Miraglia

A. Nordsieck, Phys.Rev., v.93, 785, (1954)
M. S. Gravielle and J. E. Miraglia, Comp. Phys. Cot9, 59, (1992).

We calculate now the integral

L= [ dreMd(—iy, 1i(kr—k-r)®(iy, 1, —i(Kr—k'-r)), (13)

R3
whereA is a regularization parameter. The limit procedure

A—0O

will define . as a distribution.
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We first consider the integral
dr

R3T

which is of the Nordsieck type.

From_Z; the desired integral follows directly as

0
L= (15)

L= “ATHAT(—jy, 1,i(kr—k-r)®(iy, 1, —i(Kr =K' -r)) (14)



22

To evaluate?; we employ the integral representation for the confluent
hypergeometric functio®(a, 1,z),
1
P(a,lz)=——
(81,2) 210 Jc
where the contout; starts at the poirtt= 1 and encircles the point=0
once In the positive sense. With its help we rewrité) (@s

t—1\"/ t \7 1
dt ]{ dt el
A 75:1 t e, 2( ) <t2—1> tato

/ a e AT+ (K —Kt2)r+i(q+ok —tgk) (17)
R3 I

d?(—t)a (1 —t)4dt, (16)
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We consider first an arbitrary non-collinear vectqr& andk’
kxKT#0, [qxk']#0, [gxk]#0, (18)
with an additional condition
q & M(k,k'), (19)

wherell(k,k’) is a plane, constructed on vecté&rsndk’. In order that
change of the order of integration be permitted the convergence conditiol

A+ ZkD(tl) — 2k’D(t2) > O, Vi, € Cl, Vi, € Cz, (20)

must be satisfied. Herd means imaginary part of the complex expres-
sion. The same condition must hold for any point inside the contours.
After performing the integration ov@&rwe obtain

1 Ht—1\"/ t \7 1
g:——]{dtj([dt( )( >—
. TJc, . C, ‘\ -1/ tt
1
X

[(A —i(kty — Kt2))2+ (q —tik +tok")?3]

(21)
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Extracting the additional pole in the varialilewhich comes from the
term in square brackets, this is equivalent to

1 t—1\"/ t \" 1
fz—j{dtj{dt< )( )-
YT onke e, 2\t tb—1) tit
L1 1

: (22)
[U _ tZV] [tl — t](-O)]
with
0) T —|—2tzU/ 5

S (23)

Here, we have introduced the abbreviations
U=0qg-k+idk, U =q-k'+iAK, (24)
V =kK—Kk-k', T=0°+A% (25)

The location of the polg = tio) can be found by considering
S = A +2k0tY) — 2KO(t). (26)



25

Taking in account that the imaginary part of the variablean be made
arbitrarily small, this reduces to investigating

S = A +2kO(t?). (27)
A simple calculation gives

A
S = —B{qzkz— < -k >24+t2[k%K?*— < k-K' >? + (28)
+26k*<q-k'>—<q-k><k-k'>]} =

:_%H[qu] x 8] +to[[a x K x g]° <0, (29)

for arbitraryt, € |0,1] in accordence with assumptions8f-(19). We
Introduced here the new notatién

D=[g-k—ty(kk —Kk-k)]?+ A% (30)

Since the expressior2§) is a smooth function of bothl(t;) and(t,),
one can allways find in the complex plaea small vicinityU, of the
real axis segmets € [0, 1], where nonequalityX9) still will be valid. We
construct the contouks; andGC, in equation 17) in this small vicinityUs.
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Comparing nonequality20) with (20) we conclude that the poiln_{tO> lies
outside the contouC;, and that it gives rise the only singularity there.
Hence, we can apply Cauchy’s theorem to the region boundé&z byd
a circle with radiud®k — o to perform the integration oveéy, and obtain

: i N —iy
0%1:—9(1—2—U>y(1+zu> X (31)

T T T

(0+,1+) o _
x]{ dr(1—x1) YT V(1 =2)V.
Cy
Comparing expressior81) with the definition of hypergeometric func-

tion,

2F1(Zv n, 11X) — _E.[

we deduce

(0+,1+)
7{ dtt" 1t —1)""(1—tx) "¢, (32)



4711
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with g4k —K[2— (K —K—i))?
q+K K[>~ (K — k-
=1 , 34
o= (0P +A2)AA (54)
where
_ k|2 _ il )2 N2 (1 __iXx\2
a_ JAKP= (i) KPR iAo

q2_|_A2

q2_|_)\2

Note, that derived expressio3) is an analytical function of vectoi

k andk’.

Now one can come back to conditioris8-(19). Consider first the situa-
tion when vecto has an arbitrary small projection, which is orthogonal
to the pland1, constructed on vectoksandk’. Because of the analyticity

of function.#; (33) on variableg

, the expressior33) should be also valid

for the casa € I'1, when the conditionl(9) is violated.
In the same way one can prove, that analytical expressiénhig also
valid, when the conditionl(@) is violated.
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Finally we proved, that expressio&d) is valid for arbitrary vectors|, k
andk’.

Finally we derive an expression far’ as the following:
ATT iy iy 2%
_ A VA ar o+ .

We introduced the short-hand notations

Clearly, this limiting procedurét — 0 will define #“(P’,P) only in the
sense of distributions.
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We need to separate the most singular part of the distributionZ“(P’, P),
because it will clarify the asymptotic behavior of the Coulomb Fourier
transformed potential in configuration space.

The complicated non-uniform angular dependence in initial parabolic
coordinates do not allowed to separate the most singular term imme-
diately from full expression (36).

We present two different ways to avoid the problems, mentioned above.
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Derivation of the most singular part of Z(P',P).
1. Weak asymptotics method

Let us start from the defining expression which is more carefully written

as

Zg(P.P)=lim [dxe TPPIANYG)YC(x).  (38)

We start by considering the matrix element of #i¢” -transformed short-
range potential’y = .ZV,.Zc, Eq. @), between trial functionss; €
Cy(R%),i=12
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|0 L= <Gz‘ggvagcl61>
I An! 5 (L A 1 _ip. "
— /dkldple(kl, pl) (27‘[)3/2/dX1dyle Iplyll‘l”l?ﬁ_ (X]_)
1 :
Xva(xa)(zn-)S/Z/dkldpl L/,llfl(xl)e'pl'ylGl(kl, p]_) (39)

It is obvious that the singularities oB8%) are due to the divergence of the
integral for largex| in the limit A — 0. Thus, its main singular part can
be isolated by replacing the Coulomb wave functigggx) and ¢c*(X)
by their weak asymptotics; that is, instead 83) it suffices to investigate

3= [ dxer TR AN (i), (40)
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where

(as) i . e—ikx—iwo(x)
‘-»Uk (X) — (27T)1/2k 5(X+k) X

Ikx+-iwg(X)
)el } . (41)

X

A )

_SC(k75\(7

The phasev(x) is given aswg(X) = Wo(k, X) = —ylog 2kx, and the Coulomb

S-matrixs;(k, X, k) as

21+2iy V eZiO'o
AT |R— R‘2+i2y’

so(k %, K) = (42)

with g =argl (1+1iy).
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We point out that Eq.41) is the distribution version of the asymptotics
as|x| — oo, of the integral

[ dQuicogk) “~* [ dou=x)g(k)

I e ikx—iwg(X)
= (=X)
(277)1/2k{g X

) eikx+iwo(x)
_<SC(k7X7 )7g> X } (43)

(for a description of the general procedure of how to evaluate the asymp
totic behavior of integrals of such type see

L. D. Faddeev and S. P. Merkuriev, Quantum Scattering Theory for Sev
eral Particle Systems, (Kluwer, Dordrecht, 1993).
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Here,g(k) is a smooth function on the unit sphere, gadk,%,-),g) de-
notes the action of Coulomb S-matrix considered as a distribution, I. e.,

(se(k.%.-).g) = €”g(%) szy.imo/ Y @
with
G(0) = 2my(X), G(t) = i dcpg(t P). (45)
Similarly, the formula
so(k, %, k) = @95 (% — k) + L (k, %, k) (46)

will be used as symbolic representation &)
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It is apparent that in the quantitié}ﬁ) (40), for k= 1,2,3, the integrals
overx are of similar type. They can be evaluated by means of

© - (14 ia)
dX)daeiltX )\x:eiln/z:una/z _ . A7
/0 (t:l:l)\)1+'a ( )
For the investigation of the limidA — O we have to introduce a new

distribution which corresponds to the limit — O of the denominator
(t£iA)1@in (47). This distribution is defined by its action on a smooth
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functiong(t) as

‘) —1—-ia N " dtg(t)
(10775 =M | i

— %(—2[1—&"&]
tdtg(t) — g(0)]
+/_1 (tj:io)lJria
-1 dtg(t)
+/_oo (tLi0)tia

© dtg(t)
+ /1 Axioi (48)

Symbolically it is written as

(t+£i0)~1a = é (1- ™) 3(t) + 2(t+i0) 1 (49)
whereZ? - - - denotes the integral expressions on right hand sidé&)f (
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It is shown that the leading singular term of the functigi}(P’,P) can
be separated off as

O%O?(Pla P) — Qs(kllv kl) 5((pa - p;x) ' Rl)
‘|‘Qr(P,7 Pa pa o pix) (50)
The Coulomb distorting facta2g which multiplies the leading singular
part has the form

/ d (0o—0p)
Qs(kbkl) — |Sal‘ k]_kﬁ_

QL (kg, k) (ke +KY) | (51)

{05 (16, ka) 8(ka — k)
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where

QL) (K ky) = S W)/E {(2k1)‘yl(2k’1)“Vl

(Vi —y1)/2
< (1= y))e o | (52a)
Qg (ka,KY) = Sm}%ﬁf;)‘% 2y {(2k1)‘V1(2k’1)W1
<M(1+1(y+ %))e_i("(’”é)} - (52b)

Here, [ means real parigy = gp(ki) = argl (1+iy1) and similarly for
g}, = ap(K}), with v, = ny /2Ky, andd (k' + k) is thed-function on the unit
sphere. The second tef@y (P, P, pqs — p,,) contains distributions which
are less singular than those of the first term.
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Derivation of the most singular part of Z(P',P).
2. Partial analysis method

To study the most singular term of the distribution
2(k,K50) = [ drye(k,re <9y k), (53)
we are using the two-body Coulomb wave functipiik,r) definition
Yok, r) = (2m) ¥ 2e ™M (1+iy)e<*">d(—iy, 1,i),

wherey =7¢, { =kr— <Kk,r >.
We collect all exponential terms together and rewrite the rest of initial
expressiong3) as

V+V

Z(k,K;q) = (2m)~° F(1+iy)F(1—-iy)x (54)
x/drei<°"’r>d>(—iy, 1i0)d(iy,1,—id"),

where as abovg =35, ' =Kr— <k',r >andw =k -k’ —q.
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Next step is to make a partial decomposition for all three functions un-
der the integral. Let us start with confluent hypergeometric function
d(—iy, L, i(kr— < k,r >)).

First we derive the coefficient®,(k,r) of the set

8

D(—iy, 1 i(kr— < k,r >)) Z (2 +1)P; (k,r)R(cosh),

cosf =< k,f
which Is

ik 1) == (—Tx(/l)r_ (i2‘|’)+ 2)(—2ikr)'CD(I —iy,2l +2,2kr).  (55)

Now we can write the parcial decompositions for all functions under the
Integral G4).
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For the exponent the following expansion is valid

dewr> _ 2)7:2|u|(wr)Ym( Y™ (&), (56)

u(2) = sz)

andJ, are the Bessel functions. Note, we should keep the full decompo-
sition in (56) even at arbitrary large parameterbecause we are studing
the most singular part of the integr&l4) in vicinity of the pointw = 0.

It means that the multiplicatioar is an arbitrary value.

Since the integrand inbd@) is regular at arbitrary € R3, the unlimited
Integration domain at — o will only contribute to the most singular
term of that distribution. Therefore on the physical sheet of energy we
use the asymptotic form

for the functiongb(l —iy, 2l + 1, 2ikr) in (55)

a2 L0 ), D@ <o

where

®(a,b,z) =
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which produces
(21 +2) N 1
i +2+iy)(_2|kr) 4 [1+O (HH (57)

at arbitraryk, limited from below.

Ol —iy,2l +2,2ikr) =
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Conclusion

The most singular part of the integr&ld) should be written as
2(kK30) = [ drgfik,re <9 ye (K r) = (58)

~ o/ (K, k)3(k —k'—q),
where
o (K, K) = (2K (2K) YT (L+iy)r (1—iy)x (59)

sinhy Z(y — kK
s n{z(y V)}zFl —iy,i)/;1;1+<k7k >\
2(Y—VY) 2
For the special cade, = Rll
Fo| —iy,iy;1; > | iy)’
2 1( Y, V, 2 )R_)R/F(lJrly)r(llV)

so the derived result almost coincide with the first term of expression,
obtained by the weak asymptotic method.




44

One can easily check the properties

(K,K) =1 (60)
A(kK), - L kK)o 1 (61)

Fynally we calculated the most singular part of the Nordsieck type inte-
gral (58) which playing also an important role in a theory of representa-
tions in atomic physics.

Both methods predict the same asymptotic behavior of the pot¥ptial
configuration space.



