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Description of the problem

• 1

A+ ◦ 2
B+ © 3

Hamiltonian of the system:

H = H0+VC
1 (x1)+

3

∑
ν=1

Vν(xν)

= −∆x1−∆y1 +
n1

x1
+

3

∑
ν=1

Vν, n1 > 0. (1)
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xα = cαβxβ +sαβyβ (2)
yα = −sαβxβ +cαβyβ . (3)

The coefficients are given in terms of the particle massesmν, ν = 1,2,3,
as

cαβ = −
[

mαmβ

(mα +mγ)(mβ +mγ)

]1/2

, (4)

sαβ = εβα(1−c2
αβ)1/2, (5)



4

Schr̈odinger equationHC
0 Ψ = EΨ

HC
0 =−∆y1−∆x1 +

n1

x1
,

admits an analitical solution

Ψ(X,P) = ψC
k1

(x1)ψ0
p1

(y1),

where
ψC

k1
(x1) =

= (2π)−3/2eik1·x1e−πγ1/2Γ(1+ iγ1)Φ(−iγ1;1;ik1ξ1).
Here,ξ1 = x1−x1· k̂1, γ1 = n1/2k1 is the Sommerfield parameter,Φ(a;b;z)
the confluent hypergeometric function, andΓ(z) the Gamma function.

ψ0
p1

(y1) = (2π)−3/2eiy1·p1.

It represents the normalized plane wave describing the free motion of
particle 1 relative the center of mass of the pair(2,3).
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Because of the assumptionn1 > 0, the set{ψC
k1

,ψ0
p1
} constitutes a basis

in three-particle space which is complete, orthogonal, and normalized to
δ -functions. With its help we construct a unitary three-body operatorFC

which acts as

FCG(X) =
∫

dP ψC
k1

(x1)ψ0
p1

(y1)G(P). (6)

It effects a so-called Coulomb-Fourier (C F ) transformation

TheC F transform of the HamiltonianH separates into two terms,

H := F †
CHFC = T +

3

∑
ν=1

Vν (7)

The kernel of the first termT := F †
C{H0+VC

1 }FC is easily seen to be

T (P′,P) = P2δ (P′−P), (8)

whereP2 = k2
1+p2

1 (= k2
ν +p2

ν ∀ν).
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TheC F -transformed short-range potentials

Vα ≡F †
CVαFC (9)

act as integral operators with kernels

V1(P′,P) = Ṽ1(k′1,k1)δ (p′1−p1),

Vα(P′,P) = |sα1|−3V̂α

(
p′1−p1

sα1

)
×

×L C
α (P′,P), α = 2,3.



7

Here,

Ṽ1(k′1,k1) =
∫

dx1 ψC∗
k
′
1
(x1)V1(x1)ψC

k1
(x1) (10)

is the short-range potential of subsystem 1 in the “Coulomb representa-
tion”,

V̂α(k) =
∫

dxα

(2π)3
e−ik·xαVα(xα) (11)

is the ordinary Fourier transform ofVα(xα), and

L C
α (P′,P) =

∫
dx1 e−iτα(p1−p′1)·x1ψC∗

k
′
1
(x1)ψC

k1
(x1). (12)

Moreover,τα is given in terms of the elements of the kinematic rotation
matrix asτα := cα1/sα1.
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Representation of the kernelVα in associated configuration space

To present the kernelVα in associated configuration space we need to
calculate an inverse Fourier transform

Ṽα(X,X′) = FOVαF †
O =

= (2π)−6
∫

R3
dkα

∫

R3
dk′α

∫

R3
dpα

∫

R3
dp′αVα(P′,P)×

×e−i<kα ,xα>ei<k′α ,x′α>e−i<pα ,yα>ei<p′α ,y′α>,

where

Vα(P′,P)' V̂α (kα−k′α)A (k1,k′1)δ (pα−p′α), α = 2,3.
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The coefficientA (k1,k′1) described as

A (k1,k′1) = (2k1)iγ1(2k′1)
−iγ ′1Γ(1+ iγ1)Γ(1− iγ ′1)×

×sinh
{π

2(γ1− γ ′1)
}

π
2(γ1− γ ′1)

2F1

(
−iγ1, iγ ′1;1;

1+ < k̂1, k̂′1 >

2

)
.

We know also
k1 = cα1kα−sα1pα, γ1 =

n
2k1

,

k′1 = cα1k′α−sα1pα, γ ′1 =
n

2k′1
,
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After integration overdp′α, instead of the set of three independent vari-
ables

{kα,k′α,pα}
we introduce the new set of three independent variables

{qα,q′α,pα},
where

qα = kα− sα1

cα1
pα, q′α = k′α−

sα1

cα1
pα.
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In new variables
Ṽα(X,X′) = FOVαF †

O =

= (2π)−6
∫

R3
dqα

∫

R3
dq′α

∫

R3
dpαV̂α (qα−q′α)A (cα1qα,cα1q′α)×

×e−i<qα ,xα>ei<q′α ,x′α>e−i 1
cα1

<pα ,y1−y′1> =

=
(|cα1|

2π

)3

δ (y1−y′1)×

×
∫

R3
dqα

∫

R3
dq′αV̂α (qα−q′α)A (cα1qα,cα1q′α)×
×e−i<qα ,xα>ei<q′α ,x′α>.
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In new variables

p =
1√
2
(qα−q′α), k =

1√
2
(qα +q′α)

we use the fact, that potential depends on the variablep only. We use also
that with special properties:

A (p,k) →
k→∞, p≤R<∞

1,

A (p,k) →
p→0

1.

Finally
Ṽα(X,X′) = FVαF † =

=
(|cα1|

2π

)3

δ (y1−y′1)
∫

R3
dpV̂α (p)

∫

R3
dk[A (p,k)−1]×

×e
− i√

2
<k+p,xα>

e
i√
2
<k−p,x′α>+

+|cα1|3δ (y1−y′1)δ (xα−x′α)V(xα).
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Sincey1 = cα1yα +sα1xα, the second asymptotic term appears as

δ (yα−y′α)δ (xα−x′α)Vα(xα)

and describes the asymptotic behavior of transformed pair potential in
pair α = 2,3.
The first term reflects the complicated structure of transformed initial pair
potential at small distances.



14

Conclusion

We proved, that by Coulomb Fourier transformation we eliminated the
long-range Coulomb interaction from the Hamiltonian and preserved the
asymptotic structure of other pair potentials.



15

Derivation of the ”Universal integral”

We calculate first an expression for the kernel of the potential in pairs,
which contain a neutral particle.

Vα(P′,P) =
1

(2π)3

∫

R3
dx1

∫

R3
dx′1

∫

R3
dy1

∫

R3
dy′1ψc(x1,k1)×

×ψ∗
c(x

′
1,k

′
1)e

i<y1,p1>e−i<y′1,p
′
1>δ (yα−y′α)δ (xα−x′α)V(xα).

Instead one set of independent variables{x1,y1} we choose another one
{x1,xα}, where

xα = cα1x1+sα1y1.
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The Jacobian of one-dimensional transformation

xα = cα1x1+sα1y1

is

J(N=1) =

∣∣∣∣∣
∂x1
∂x1

∂x1
∂y1

∂xα
∂x1

∂xα
∂y1

∣∣∣∣∣ =
∣∣∣∣

1 0
cα1 sα1

∣∣∣∣ = sα1.

Since it will be valid in each dimension, the three-dimensional Jacobian
is the power three of one-dimensional one

J(N=3) = s3
α1.

The same will be valid for the primed coordinates{x′1,x′α}.
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We also take into account that

yα =− 1
sα1

x1+
cα1

sα1
xα,

and consequently

yα−y′α =− 1
sα1

(x1−x′1)+
cα1

sα1
(xα−x′α).

It means, that

δ (xα−x′α)δ (yα−y′α) = δ (xα−x′α)δ
(

x1−x′1
sα1

)
=

= |sα1|3δ (xα−x′α)δ (x1−x′1) .
Integrating over the primed coordinates, we derive

Vα(P′,P) =
1

|sα1|3(2π)3

∫

R3
dx1

∫

R3
dxαψc(x1,k1)×

×ψ∗
c(x1,k′1)e

i 1
sα1

<xα ,p1−p′1>e−i
cα1
sα1

<x1,p1−p′1>V(xα).
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Integrating overdxα we use the separation of variables and the definition
of the Fourier transform

V̂α

(
p′1−p1

sα1

)
=

1
(2π)3

∫

R3
dxαei 1

sα1
<xα ,p1−p′1>V(xα).

Therefor we finally derive an expression

Vα(P′,P) = |sα1|−3V̂α

(
p′1−p1

sα1

)
×

×
∫

R3
dx1ψc(x1,k1)ψ∗

c(x1,k′1)e
−i

cα1
sα1

<x1,p1−p′1>.



19

Consider the limit casen = Z1Z2e2√2µ → 0.
Then

ψc(x1,k1) →
n→0

(2π)−3/2ei<x1,k1>,

which consequently means

Vα(P′,P) →
n→0

δ (pα−p′α)V̂α(kα−k′α).

Coming back to the main expression, we finally proved, that

Vα(P′,P) = |sα1|−3V̂α

(
p′1−p1

sα1

)
×

×L C
α (P′,P), α = 2,3.
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Evaluation of analytical expression for the ”Universal integral” out-
side of vicinities of singularities

Has been studied in atomic physics by H.Bethe, and A.Nordsieck in 1950-
th and later by M.Gravielle and J.Miraglia

A. Nordsieck, Phys.Rev., v.93, 785, (1954)
M. S. Gravielle and J. E. Miraglia, Comp. Phys. Com.69, 59, (1992).

We calculate now the integral

L =
∫

R3
dre−λ r+iq·rΦ(−iγ,1, i(kr−k · r))Φ(iγ ′,1,−i(k′r−k′ · r)), (13)

whereλ is a regularization parameter. The limit procedure

λ → 0

will defineL as a distribution.
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We first consider the integral

L1 =
∫

R3

dr
r

e−λ r+iq·rΦ(−iγ ,1, i(kr−k · r))Φ(iγ ′,1,−i(k′r−k′ · r)) (14)

which is of the Nordsieck type.
FromL1 the desired integral follows directly as

L =− ∂
∂λ

L1. (15)
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To evaluateL1 we employ the integral representation for the confluent
hypergeometric functionΦ(a,1,z),

Φ(a,1,z) =− 1
2π i

∮

C1

etz(−t)a−1(1− t)−adt, (16)

where the contourC1 starts at the pointt = 1 and encircles the pointt = 0
once in the positive sense. With its help we rewrite (14) as

L1 = − 1
4π2

∮

C1

dt1

∮

C2

dt2

(
t1−1

t1

)iγ (
t2

t2−1

)iγ ′ 1
t1t2

×
∫

R3

dr
r

e−λ r+i(kt1−k′t2)r+i(q+t2k′−t1k)·r . (17)



23

We consider first an arbitrary non-collinear vectorsq, k andk′

[k×k′] 6= 0, [q×k′] 6= 0, [q×k] 6= 0, (18)

with an additional condition

q 6∈Π(k,k′), (19)

whereΠ(k,k′) is a plane, constructed on vectorsk andk′. In order that
change of the order of integration be permitted the convergence condition

λ +2kℑ(t1)−2k′ℑ(t2) > 0, ∀t1 ∈C1, ∀t2 ∈C2, (20)

must be satisfied. Hereℑ means imaginary part of the complex expres-
sion. The same condition must hold for any point inside the contours.
After performing the integration overr we obtain

L1 = −1
π

∮

C1

dt1

∮

C2

dt2

(
t1−1

t1

)iγ (
t2

t2−1

)iγ ′ 1
t1t2

× 1
[(λ − i(kt1−k′t2))2+(q− t1k + t2k′)2]

. (21)
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Extracting the additional pole in the variablet1 which comes from the
term in square brackets, this is equivalent to

L1 =
1

2π

∮

C1

dt1

∮

C2

dt2

(
t1−1

t1

)iγ (
t2

t2−1

)iγ ′ 1
t1t2

× 1
[U− t2V]

1

[t1− t(0)
1 ]

, (22)

with

t(0)
1 =

T +2t2U ′

2(U− t2V)
, (23)

Here, we have introduced the abbreviations

U = q ·k + iλk, U ′ = q ·k′+ iλk′, (24)
V = kk′−k ·k′, T = q2+λ 2. (25)

The location of the polet1 = t(0)
1 can be found by considering

S0 := λ +2kℑ(t(0)
1 )−2k′ℑ(t2). (26)
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Taking in account that the imaginary part of the variablet2 can be made
arbitrarily small, this reduces to investigating

S0 = λ +2kℑ(t(0)
1 ). (27)

A simple calculation gives

S0 =−λ
D

{
q2k2−< q ·k >2 +t2

2[k
2k′2−< k ·k′ >2]+ (28)

+2t2[k2 < q ·k′ >−< q ·k >< k ·k′ >]
}

=

=−λ
D
|[[q×k]× q̂]+ t2[[q×k′]× q̂]|2 < 0, (29)

for arbitrary t2 ∈ [0,1] in accordence with assumptions (18)-(19). We
introduced here the new notationD:

D = [q ·k− t2(kk′−k ·k′)]2+λ 2k2. (30)

Since the expression (26) is a smooth function of bothℑ(t2) andℜ(t2),
one can allways find in the complex planet2 a small vicinityUε of the
real axis segmentt2∈ [0,1], where nonequality (29) still will be valid. We
construct the contoursC1 andC2 in equation (17) in this small vicinityUε.
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Comparing nonequality (29) with (20) we conclude that the pointt(0)
1 lies

outside the contourC1, and that it gives rise the only singularity there.
Hence, we can apply Cauchy’s theorem to the region bounded byC1 and
a circle with radiusR→ ∞ to perform the integration overt1, and obtain

L1 =−2i
T

(
1− 2U

T

)iγ (
1+

2U ′

T

)−iγ ′

× (31)

×
∮ (0+,1+)

C4

dτ(1−x0τ)−iγ ′τ−iγ−1(τ−1)iγ.

Comparing expression (31) with the definition of hypergeometric func-
tion,

2F1(ζ ,η ,1;x) =− i
2π

∮ (0+,1+)
dttη−1(t−1)−η(1− tx)−ζ , (32)

we deduce
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L1 =
4π

q2+λ 2
Aiγ

1 A−iγ ′
2 2F1(iγ ′,−iγ,1;x0), (33)

with

x0 = 1+
|q+k′−k|2− (k′−k− iλ )2

(q2+λ 2)A1A2
, (34)

where

A1 =−|q−k|2− (k+ iλ )2

q2+λ 2
, A2 =

|q+k′|2− (k′− iλ )2

q2+λ 2
. (35)

Note, that derived expression (33) is an analytical function of vectorsq,
k andk′.
Now one can come back to conditions (18)-(19). Consider first the situa-
tion when vectorq has an arbitrary small projection, which is orthogonal
to the planeΠ, constructed on vectorsk andk′. Because of the analyticity
of functionL1 (33) on variableq, the expression (33) should be also valid
for the caseq ∈Π, when the condition (19) is violated.
In the same way one can prove, that analytical expression (33) is also
valid, when the condition (18) is violated.
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Finally we proved, that expression (33) is valid for arbitrary vectorsq, k
andk′.

Finally we derive an expression forL as the following:

L =
4π

(q2+λ 2)2
Aiγ

1 A−iγ ′
2

[
J21F (x0)+

γγ ′

A1A2
J22F

+(x0)
]
. (36)

We introduced the short-hand notations

F (x0) := 2F1(iγ ′,−iγ,1;x0), F+(x0) := 2F1(1+ iγ ′,1− iγ ,2;x0). (37)

Clearly, this limiting procedureλ → 0 will defineL C(P′,P) only in the
sense of distributions.
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We need to separate the most singular part of the distributionL C(P′,P),
because it will clarify the asymptotic behavior of the Coulomb Fourier
transformed potential in configuration space.

The complicated non-uniform angular dependence in initial parabolic
coordinates do not allowed to separate the most singular term imme-
diately from full expression (36).

We present two different ways to avoid the problems, mentioned above.
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Derivation of the most singular part of Lc(P′,P).
1. Weak asymptotics method

Let us start from the defining expression which is more carefully written
as

L C
α (P′,P) = lim

λ→0

∫
dxe−iτ(p−p′)·x−λ |x|ψC∗

k′ (x)ψC
k (x). (38)

We start by considering the matrix element of theC F -transformed short-
range potentialVα = F †

CVαFC, Eq. (9), between trial functionsGi ∈
C∞

0 (R6), i = 1,2.
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I0 := 〈G2|F †
CVαFC|G1〉

=
∫

dk′1dp′1G∗
2(k

′
1,p

′
1)

1
(2π)3/2

∫
dx1dy1e−ip′1·y1ψC∗

k′1
(x1)

×Vα(xα)
1

(2π)3/2

∫
dk1dp1ψC

k1
(x1)eip1·y1G1(k1,p1). (39)

It is obvious that the singularities of (38) are due to the divergence of the
integral for large|x| in the limit λ → 0. Thus, its main singular part can
be isolated by replacing the Coulomb wave functionsψC

k (x) andψC∗
k′ (x)

by their weak asymptotics; that is, instead of (38) it suffices to investigate

J(as)
λ :=

∫
dxe−iτ(p−p′)·x−λ |x|ψ (as)∗

k′ (x)ψ (as)
k (x), (40)
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where

ψ (as)
k (x) =

i
(2π)1/2k

{
δ (x̂+ k̂)

e−ikx−iw0(x)

x

−sc(k, x̂, k̂)
eikx+iw0(x)

x

}
. (41)

The phasew0(x) is given asw0(x)≡w0(k,x)=−γ log2kx, and the Coulomb
S-matrixsc(k, x̂, k̂) as

sc(k, x̂, k̂) =
21+2iγ γ

2iπ
e2iσ0

|x̂− k̂|2+i2γ
, (42)

with σ0 = argΓ(1+ iγ).
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We point out that Eq. (41) is the distribution version of the asymptotics
as|x| → ∞, of the integral

∫
dΩk ψC

k (x)g(k̂)
|x|→∞∼

∫
dΩk ψ (as)

k (x)g(k̂)

=
i

(2π)1/2k

{
g(−x̂)

e−ikx−iw0(x)

x

−〈sc(k, x̂, ·),g〉e
ikx+iw0(x)

x

}
(43)

(for a description of the general procedure of how to evaluate the asymp-
totic behavior of integrals of such type see

L. D. Faddeev and S. P. Merkuriev, Quantum Scattering Theory for Sev-
eral Particle Systems, (Kluwer, Dordrecht, 1993).
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Here,g(k̂) is a smooth function on the unit sphere, and〈sc(k, x̂, ·),g〉 de-
notes the action of Coulomb S-matrix considered as a distribution, i. e.,

〈sc(k, x̂, ·),g〉 := e2iσ0g(x̂)+
2iγ γe2iσ0

2iπ

∫ 2

0
dt

G(t)−G(0)
t1+iγ , (44)

with

G(0) = 2πg(x̂), G(t) =
∫ 2π

0
dφ g(t,φ). (45)

Similarly, the formula

sc(k, x̂, k̂) = e2iσ0δ (x̂− k̂)+sp
c(k, x̂, k̂) (46)

will be used as symbolic representation of (44).
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It is apparent that in the quantitiesJ(as)
λ ,k (40), for k = 1,2,3, the integrals

overx are of similar type. They can be evaluated by means of
∫ ∞

0
dxxia e±itx−λx = e±iπ/2∓πa/2 Γ(1+ ia)

(t± iλ )1+ia
. (47)

For the investigation of the limitλ → 0 we have to introduce a new
distribution which corresponds to the limitλ → 0 of the denominator
(t± iλ )1+ia in (47). This distribution is defined by its action on a smooth
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functiong(t) as

〈(t± i0)−1−ia,g〉 := lim
λ→0

∫ ∞

−∞

dt g(t)
(t± iλ )1+ia

=
g(0)
−ia

[1−e±πa]

+
∫ 1

−1

dt [g(t)−g(0)]
(t± i0)1+ia

+
∫ −1

−∞

dt g(t)
(t± i0)1+ia

+
∫ ∞

1

dt g(t)
(t± i0)1+ia

. (48)

Symbolically it is written as

(t± i0)−1−ia =
i
a

(
1−e±πa

)
δ (t)+P(t± i0)−1−ia (49)

whereP · · · denotes the integral expressions on right hand side of (48).
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It is shown that the leading singular term of the functionL C
α (P′,P) can

be separated off as

L C
α (P′,P) = Ωs(k′1,k1)δ ((pα−p′α) · k̂1)

+Ωr(P′,P,pα−p′α). (50)

The Coulomb distorting factorΩs which multiplies the leading singular
part has the form

Ωs(k′1,k1) = |sα1|e
i(σ0−σ ′0)

k1k′1

{
Ω(−)

s (k′1,k1)δ (k̂1− k̂′1)

−Ω(+)
s (k′1,k1)δ (k̂1+ k̂′1)

}
(51)
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where

Ω(−)
s (k′1,k1) :=

sinh[π(γ1− γ ′1)/2]
π(γ1− γ ′1)/2

ℜ
{
(2k1)iγ1(2k′1)

−iγ ′1

×Γ(1+ i(γ1− γ ′1))e−i(σ0−σ ′0)
}

(52a)

Ω(+)
s (k1,k′1) :=

sinh[π(γ1+ γ ′1)/2]
π(γ1+ γ ′1)/2

ℜ
{
(2k1)iγ1(2k′1)

iγ ′1

×Γ(1+ i(γ1+ γ ′1))e−i(σ0+σ ′0)
}

. (52b)

Here,ℜ means real part,σ0 ≡ σ0(k1) = argΓ(1+ iγ1) and similarly for
σ ′

0≡ σ0(k′1), with γ ′1 = n1/2k′1, andδ (k̂′± k̂) is theδ -function on the unit
sphere. The second termΩr(P,P′,pα −p′α) contains distributions which
are less singular than those of the first term.
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Derivation of the most singular part of Lc(P′,P).
2. Partial analysis method

To study the most singular term of the distribution

L (k,k′;q) =
∫

drψc(k, r)e−i<q,r>ψc∗(k′, r), (53)

we are using the two-body Coulomb wave functionψc(k, r) definition

ψc(k, r) = (2π)−3/2e−πγ/2Γ(1+ iγ)ei<k,r>Φ(−iγ,1, iζ ),

whereγ = nc
2k, ζ = kr−< k, r >.

We collect all exponential terms together and rewrite the rest of initial
expression (53) as

L (k,k′;q) = (2π)−3e−
π(γ+γ ′)

2 Γ(1+ iγ)Γ(1− iγ ′)× (54)

×
∫

drei<ω,r>Φ(−iγ,1, iζ )Φ(iγ ′,1,−iζ ′),

where as aboveγ ′ = nc
2k′, ζ ′ = k′r−< k′, r > andω = k−k′−q.
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Next step is to make a partial decomposition for all three functions un-
der the integral. Let us start with confluent hypergeometric function
Φ(−iγ,1, i(kr−< k, r >)).

First we derive the coefficientsΦl(k, r) of the set

Φ(−iγ,1, i(kr−< k, r >)) =
∞

∑
l=0

(2l +1)Φl(k, r)Pl(cosθ),

cosθ =< k̂, r̂ >,

which is

Φl(k, r) =
Γ(l − iγ)

Γ(−iγ)Γ(2l +2)
(−2ikr)lΦ(l − iγ,2l +2,2ikr). (55)

Now we can write the parcial decompositions for all functions under the
integral (54).
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For the exponent the following expansion is valid

ei<ω,r> =
4π
ωr ∑

l ,m

i lul(ωr)Ym
l (r̂)Ym

l
∗(ω̂), (56)

where

ul(z) =
√

πz
2

Jl+1
2
(z)

andJp are the Bessel functions. Note, we should keep the full decompo-
sition in (56) even at arbitrary large parameterr, because we are studing
the most singular part of the integral (54) in vicinity of the pointω = 0.
It means that the multiplicationωr is an arbitrary value.
Since the integrand in (54) is regular at arbitraryr ∈ R3, the unlimited
integration domain atr → ∞ will only contribute to the most singular
term of that distribution. Therefore on the physical sheet of energy we
use the asymptotic form
for the functionsΦ(l − iγ,2l +1,2ikr) in (55)

Φ(a,b,z) =
Γ(b)

Γ(b−a)
(−z)−a[1+O(|z|−1)], ℜ(z) < 0,
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which produces

Φ(l − iγ,2l +2,2ikr) =
Γ(2l +2)

Γ(l +2+ iγ)
(−2ikr)iγ−l

[
1+O

(
1
kr

)]
(57)

at arbitraryk, limited from below.
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Conclusion

The most singular part of the integral (58) should be written as

L (k,k′;q) =
∫

drψc(k, r)e−i<q,r>ψc∗(k′, r)' (58)

'A (k,k′)δ (k−k′−q),
where

A (k,k′) = (2k)iγ(2k′)−iγ ′Γ(1+ iγ)Γ(1− iγ ′)× (59)

×sinh
{π

2(γ− γ ′)
}

π
2(γ− γ ′) 2F1

(
−iγ, iγ ′;1;

1+ < k̂, k̂′ >
2

)
.

For the special casêk1 = k̂′1

2F1

(
−iγ, iγ ′;1;

1+ < k̂, k̂′ >
2

)
→

k̂→k̂′

Γ(1+ i(γ− γ ′)
Γ(1+ iγ)Γ(1− iγ ′)

,

so the derived result almost coincide with the first term of expression,
obtained by the weak asymptotic method.
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One can easily check the properties

A (k,k) = 1 (60)

A (k,k′) →
k,k′→∞

1, A (k,k′) →
γ,γ ′→0

1. (61)

Fynally we calculated the most singular part of the Nordsieck type inte-
gral (58) which playing also an important role in a theory of representa-
tions in atomic physics.

Both methods predict the same asymptotic behavior of the potentialVα in
configuration space.


