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Introduction

We suggest a new adiabatic approach for description of three charged par-
ticles in the continuum. This approach is based on the Coulomb-Fourier
transformation (CFT) of three body Hamiltonian, which allows to develop
a scheme, alternative to Born-Oppenheimer one. The approach appears
as an expansion of the kernels of corresponding integral transformations
in terms of small mass-ratio parameter. To be specific, the results are
presented for the systemppe in the continuum. The wave function of a
such system is compared with that one which is used for estimation of the
rate for triple reactionp+ p+ e→ d + ν , which take place as a step of
pp-cycle in the center of the Sun. The problem of microscopic screening
for this particular reaction is discussed.
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Application to the case of two heavy and one light particlesA+ B+ e−

e− • 1

A+ © 2
B+ © 3

Hamiltonian of the system in configuration space:

H =−∆x1−∆y1 +vs(x1)+n1/x1+n2/x2+n3/x3.
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Coulomb Fourier Transformed Hamiltonian in momentum space:

Ĥ(P,P′) = 〈ψ0
p1

ψc
k1
|H|ψ0

p′1
ψc

k′1
〉= (1)

= (k2
1+p2

1)δ (k1−k′1)δ (p1−p′1)+ v̂s(k1,k′1)δ (p1−p′1)+

+W2(P,P′)+W3(P,P′)
operating on CF-transformed wave functionΨ̂(P).

v̂s(k1,k′1) = 〈ψc
k1
|vs|ψc

k′1
〉=

∫
dx1ψc∗

k1
(x1)vs(x1)ψc

k′1
(x1)

andWj are Coulomb potentialsn j/x j, j = 2,3 in CF representation.
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Let us notice, that the contribution fromn1/x1 potential has been elimi-
nated by CF transform.

Wj(P,P′) = |sj1|−3v̂c
j

(
p1−p′1

sj1

)
L j(P,P′),

where

v̂c
j(q) =

1
2π2

n j

|q|2
is the familiar Fourier transform of Coulomb potentialn j/x j and the func-
tionsL j(P,P′), j = 2,3 are given by the integrals

L j(P,P′) = lim
λ→+0

∫
dx1eiτ j〈x1,p−p′〉−λ |x1|ψc∗

k1
(x1)ψc

k′1
(x1). (2)

The parametersτ j, j = 2,3, have the kinematical origin and are repre-
sented in terms of kinematic rotation matrix elements as

τ j = c j1/sj1.

τ2 =
√

me/2mp(1+O(me/mp)), τ3 =−τ2,

what shows thatτ j are small.
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The expansion of the kernelL j(P,P′):

L j(P,P′) = δ (k1−k′1)+ (3)

iτ j

1!
L(1)(P,P′)+

(iτ j)2

2!
L(2)(P,P′)+

(iτ j)3

3!
L(3)(P,P′)+ ...

HereL(l)(P,P′) are integrals

L(l)(P,P′) =

= lim
λ→+0

∫
dx1e−λ |x1|ψc∗

k1
(x1)〈x1,p1−p′1〉lψc

k′1
(x1)

which are independent onj.
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Sinceτ2 =−τ3

W2(P,P′)+W3(P,P′) = v̂c
e f f(p1,p′1)×

{
δ (k1−k′1)−

τ2

2!
L(2)(P,P′)+

τ4

4!
L(4)(P,P′)− ...

}
,

where we have introduced parameterτ = |τ2|.

v̂c
e f f(p1,p′1) =

1
2π2

ne f f

|p−p′|2
with ne f f =−2e2

√
2 me2mp

me+2mp
∼−2e2

√
2me.
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We arrive at the representation of the CF-transformed HamiltonianĤ
which plays a central role in the solution of the problem

Ĥ = Ĥ0+V̂s+V̂c
e f f + τ2Ŵ. (4)

The kernels of operators involved in (4) read

Ĥ0(P,P′) =
(
k2

1+p2
1

)
δ (P−P′),

V̂s(P,P′) = v̂s(k1,k′1)δ (p1−p′1),

V̂c
e f f(P,P′) = v̂c

e f f(p1,p′1)δ (k1−k′1)

and

Ŵ(P,P′) =−Ŵ(2)(P,P′)+ τ2Ŵ(4)(P,P′)− τ4Ŵ(6)(P,P′)+ ...,

Ŵ(l)(P,P′) = v̂c
e f f(p1,p′1)

1
l !

L(l)(P,P′) (5)
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The structure of the Hamiltonian (4) suggests now the natural perturbative
scheme for solution of Schrödinger equation. Let us represent the wave-
functionΨ̂ as power series inτ2

Ψ̂ = Ψ̂0+ τ2Ψ̂2+ τ4Ψ̂4+ ... (6)

We obtain the recursive set of equations forΨ̂k, i.e.
(
Ĥ0+V̂s+V̂c

e f f

)
Ψ̂0 = EΨ̂0, (7)

(
Ĥ0+V̂s+V̂c

e f f

)
Ψ̂2l = EΨ̂2l −

l−1

∑
s=0

(−1)l−sŴ(2l−2s)Ψ̂2s, (8)

l = 1,2,3, ...

The scheme (7, 8) has a remarkable property, namely, the solution of the
three-body problem in framework of this scheme can be obtained in terms
of solutions of two-body problem.



11

The solution of the first equation (7) reads

Ψ̂0(P,Pin) = ψ̂+
k in

1
(k1)ψ̂ce

pin
1
(p1), (9)

Pin2 = k in
1

2+pin
1

2 = E.

Ψ̂2l =−Ĝs,e f f(E + i0)
l−1

∑
s=0

(−1)l−sŴ(2l−2s)Ψ̂2s.

Here the kernel of the operator

Ĝs,e f f(z) =
(

Ĥ0+V̂s+V̂c
e f f−z

)−1
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The kernel of the operator̂Gs,e f f(z) =
(

Ĥ0+V̂s+V̂c
e f f−z

)−1
is repre-

sented through two-body Green’s functionsĝs for potentialv̂s andĝc
e f f for

potentialv̂c
e f f by the convolution integral

Ĝs,e f f(P,P′,z) =
1

2iπ

∮

C
dζ ĝs(k1,k′1,ζ )ĝc

e f f(p1,p′1,z−ζ )

with counterC encircling the cut of̂gs in anticlockwise direction.
So that, we have constructed the formal solution to the CF transformed
Schr̈odinger equation for the systemppein the continuum. The configu-
ration space wave function can be obtained fromΨ̂

Ψ(X,Pin) =
∫

dPΨc0(X,P)Ψ̂(P,Pin). (10)

Now one can see, that the structure of our solution (6) and respective
series inτ2 for Ψ(X,Pin) generated from (10) by (6) and the structure of
the representation for the Hamiltonian (4) outline the framework of our
approach as an alternative to Born-Oppenheimer one.
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It is worth mentioning here, that the formalism given above is rather
general and with minor evident modifications is applicable for the three
charged particle systems for the case of different masses when the mass
of one particle is significantly smaller than the masses of others.
Let us give some explicit formulas for approximation to the wave function
Ψ(X,Pin) generated by our complete formal solution. Introducing (9) into
(10) we get

Ψ(X,Pin) = ψ+
k in

1
(x1)ψce

pin
1
(y1)+ τ2Ψ2(X,Pin)+O(τ4). (11)

Here
ψ+

k in
1
(x1) =

∫
dk1ψc

k1
(x1)ψ̂+

k in
1
(k1)

is the two body scattering wave function corresponding to the potential
vs(x)+ n1/x andΨ2(X,Pin) is given by transform (10) of Ψ̂2 calculated
throughΨ̂0 from (9) by formula

Ψ̂2 =−Ĝs,e f f(E + i0)Ŵ(2)Ψ̂0. (12)
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The complete investigation of properties of the solutions to (7,8) is out of
the scope of this paper and will be made elsewhere. Below in this sec-
tion, we consider two points which plays the key role for the formalism,
namely the singular structure of operatorŴ and the structure of correc-
tion termΨ̂2 (and consequentlyΨ2) which possesses the most important
properties specific for all correction termsΨ̂2l .
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The most singular part of the integralLl(P,P′) has the form

L(l)(P,P′)' δ (k̂, k̂′)δ (l)(k−k′)〈k̂,p−p′〉lL (l)(k,k′). (13)

Here and in what follows we use two notational options, first the' sign
manifests the fact that the less singular terms are not presented in the
equation and second subscript 1 is omitted from definition of momentums
and coordinates . Delta-functionδ (k̂, k̂′) on unit sphereS2 = {k : k = 1}
andl -th derivative of delta-functionδ (l)(k−k′) are defined by

∫

S2
dk̂ δ (k̂, k̂′)g(k̂′) = f (k̂),

∫ ∞

−∞
dk′δ (l)(k−k′)g(k) = (−1)lg(l)(k).
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The functionL (l)(k,k′) being a smooth function ofk andk′ for l -even
has the form

L (l)(k,k′) =
1

kk′
e−i(σ(k)−σ(k′))sinhπ(γ−γ ′)

2
π(γ−γ ′)

2

×

ℜ
[
ei(σ0(k)−σ0(k′))+i π l

2 (2k)−iγ(2k′)iγ ′Γ(1− i(γ− γ ′))
]
.

Above formulas forL(l)(P,P′) can be used to compute the action ofŴ(2)

operator onΨ̂0

Ŵ(2)Ψ̂0(P,Pin) =
1
2
I1(k,k in)I2(p,pin, k̂) (14)

where

I1(k,k in) =
∫

dk′δ (k̂, k̂′)δ (2)(k−k′)L (2)(k,k′)ψ̂+
k in(k′)

and
I2(p,pin, k̂) =

∫
dp′ v̂c

e f f(p,p′)〈k̂,p−p′〉2ψ̂ce
pin(p′).
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Both integralsI j are singular distributions. For the second integral, it is
useful to make a linear change of variables to get

I2(p,pin, k̂) =
ne f f

2π2

∫
dq〈k̂, q̂〉2ψ̂ce

pin(q+p)

and then using Fourier transform forψ̂ce
pin(p) rewrite this integral as

I2(p,pin, k̂) =
ne f f

2π2

∫
dyD(y, k̂)e−i〈p,y〉ψce

pin(y). (15)

Here the functionD(y, k̂) is given by

D(y, k̂) = lim
λ→+0

1
(2π)3/2

∫
dqe−i〈q,y〉−λq〈k̂, q̂〉2.

It is shown that the main singular part ofD(y, k̂) is proportional to delta-
function, i.e.

D(y, k̂)' 1
3(2π)3/2

δ (y).
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The latter gives for the most singular part of the integralI2(p,pin, k̂)

I2(p,pin, k̂)' Ne f fψce
pin(0), (16)

Ne f f =
ne f f

2π2

1
3(2π)3/2

.

Now, inserting formulas given above in (12) we can represent the correc-
tion termΨ̂2 as the integral

Ψ̂2(P,Pin) =− 1
4π i

∫
dP′

∮

C
dζ ĝs(k,k′,ζ )ĝc

e f f(p,p′,E−ζ + i0)× (17)

I1(k′,k in)I2(p′,pin, k̂′).
This general formula can be simplified if we take instead of full Green’s
functionĝs(k,k′,ζ ) its main singular part which is Green’s function of the
two-body kinetic energy operatorδ (k− k′)(k2− ζ )−1. This case in fact
has the particular physical sense, since taking into account that we left
only delta-function forψ̂+

s the resulting approximation is exactly equiva-
lent to the neglect of the short-range potentialVs from the very beginning.
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Formula (17) is transformed in this case to

Ψ̂2(P,Pin)' (18)

−1
2
Ne f fI1(k,k in)

∫
dp′ĝc

e f f(p,p′,E−k2+ i0)ψce
pin(0).

The configuration space representation forΨ2 which can be obtained
from formula (10) is reduced now to the integral

Ψ2(X,Pin)'
−1

2
Ne f fψce

pin(0)
∫

dk ψc
k(x)I s

1(k,k in)gc
e f f(y,0,E−k2+ i0).

Final form for this integral follows immediately from delta-functional fac-
tors ofI1 and reads

Ψ2(X,Pin)'−1
2
Ne f fψce

pin(0)× (19)

∂ 2

∂ t2

[
t2L (2)(t,kin)ψc

tk̂ in(x)gc
e f f(y,0,E− t2+ i0)

]∣∣∣∣
t=kin

.
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This formula describes the correction termΨ2 for the ppesystem when
strongpp interaction is neglected and at the same time is approximation
to the termΨ2 in the general case.
The formula (19) is useful for constructing the coordinate asymptotics of
Ψ2(X,Pin) asy→ ∞. One needs to use well known coordinate asymp-
totics of Coulomb Green’s function asy→ ∞ andy′ is bound

gc
e f f(y,y′,s2+ i0)∼ exp{isy− i

ne f f
2s log2sy}

4πy
ψce∗
−sŷ(y

′)
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This asymptotic formula gives the following asymptotics ofΨ2(X,Pin)

Ψ2(X,Pin)∼ (20)

A (x,k in,pin, ŷ)
exp{ipiny− i

ne f f

2pin log2piny}
4πy

(
1+O

(
y
kin

pin

))

where the amplitudeA has the explicit form

A (x,k in,pin, ŷ) =−1
2
Ne f fψce

pin(0)×
∂ 2

∂ t2

[
t2L (2)(t,kin)ψc

tk̂ in(x)ψce∗
−
√

E−t2ŷ
(0)

]∣∣∣∣
t=kin

Here byO
(

ykin

pin

)
we have denoted terms corresponding to derivatives of

exponential factor in (19). The order of this terms shows the range of
validity of the asymptotics (20), i.e. ykin

pin has to be small, what in terms of
masses must be equivalent to the fact thatyτ has to be small.
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Astrophysical Examples

Now let us discuss ways of describing some reactions of thepp-cycle on
the Sun, which can be done on the ground of 3-body wave function given
by (11). In other words, we will consider situations when in the initial
state the system consists of three charged particles in the continuum and
the mass of one of them is much smaller than other masses.
The first example gives the reaction

p+ p+e→ d+ν (21)

considered. As it follows from the form of the main term in the right
hand side of (11), with very good accuracy we have separation of the
Jacobi coordinates in the wave function of the initial state for the reaction
(21). This means that the rate of three-body process (21) can be expressed
in terms of a binary process

p+ p→ d+e+ +ν (22)

This is just the main result of paper. Now it becomes clear that the physi-
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cal background of the above result from the point of view of the few-body
theory consists in two points:
a) the system has two heavy and one light particle such that the parameter
m
M ¿ 1 and therefore one can neglect the second term in the right-hand
side of (11).
b) heavy particles are slow enough to neglect higher partial waves in their
relative motion. One should emphasize that free ”effective charge of the
initial nuclear system”Z, introduced in , can now be fixed to valueZ = 2
which is supported by the structure of (11).
Let us consider another example of 3-body initial state

p+7 Be+e, (23)

which can produce8Be or7Li nuclei via the following reactions
↗ 8B+e (or 8B+e+ γ)

p+7 Be+e
↘ 7Li + p+ν

First, from the previous discussion one can see that due to different masses
of heavy particles in this case the contribution from the linear termτ is
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nonzero in contrast to thep+ p+e system, and this contribution should
be estimated.
If the electron in state (23) is in the continuum, then again due to the
separation of Jacobi coordinate in the first term of (11) the rate of the
proton capture from the initial three-body state (23) can be expressed via
the rate of the binary reactionp+7 Be→8 B+ γ.
However, the rate of the electron capture from the initial three-body state
(23), as it follows from (11), (modified for the state (23)), will be defined
by the Coulomb wave function of the electron moving in the Coulomb
field with the chargeZ = 5 instead ofZ = 4 for the capture from the two-
body state7Be+e. This means that the production rate of7Li from the
three-body state (23) cannot be expressed via the binary (e+7Be→7Li+ν)
reaction rate. Roughly speaking, the ratio of these rates will be propor-
tional to the ratio of the corresponding electron Coulomb functions at
energy in the center of the SunEs. In other words,

w3

w2
∼

∣∣∣∣
ψc(0,Es,Z = 5)
ψc(0,Es,Z = 4)

∣∣∣∣
2

∼ 5
4
.
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Now let us discuss the problem of screening of the Coulomb interaction
between two protons for the systemp+ p+ e. We restrict ourselves by
lowest order in the ratiome/mp for the three-body wave function, i.e.
consider only first term in the (11). It is evident, that the screening effect
in this approximation appears due to the electronic wave functionψce

pin(y)

wherey =
√

4memp
me+2mp

(
R
2 + r

)
, R being the distance between protons andr

being the distance between electron and one of the protons. Taking the
asymptotics of this function in the region whereRÀ r, one can see that
the Coulomb phases ofpp wave function and electronic wave function
can cancel each other for the specific configurations of initial momentums
k in andpin of three-body system under consideration. Hence the resulting
motion of two protons in this configuration would be described by plane
wave, which means the total screening effect.
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Conclusion

In conclusion we emphasize, that the CF-transformed three-body Hamil-
tonian (4) for the system of two heavy and one light particles can be
used for realization of adiabatic expansion which is alternative to the
Born-Oppenheimer one. This approach makes possible to treat screen-
ing effects on the microscopic level. The application of zero order inτ
approximation to some astrophysical reactions allows to express rates of
three-body processes in terms of rates of binary processes.


