Coulomb-Fourier transformation Ill.
Three charged particles in the continuum.

S.B.Levin

V. A. Fock Institute for Physics, St. Petersburg University, 198904 St. Petersburg, Russi
SCFAB, Stockholm University, 10691, Stockholm, Sweden

Based on the joint work with V.B.Belyaev and S.L.Yakovlev
V.B.Belyaev, S.B.Levin, S.L.YakovleV,Phys.B37, 1369-1380, (2004)



Content

1. Formulation of the problem
2. Adiabatic expansion for three-body Hamiltonian and solution

3. Properties of the solution
4. Conclusion



Introduction

We suggest a new adiabatic approach for description of three charged pa
ticles in the continuum. This approach is based on the Coulomb-Fourie
transformation (CFT) of three body Hamiltonian, which allows to develop
a scheme, alternative to Born-Oppenheimer one. The approach appea
as an expansion of the kernels of corresponding integral transformation
In terms of small mass-ratio parameter. To be specific, the results ar
presented for the systeppein the continuum. The wave function of a
such system is compared with that one which is used for estimation of the
rate for triple reactiomp+ p+e— d+ v, which take place as a step of
pp-cycle in the center of the Sun. The problem of microscopic screening
for this particular reaction is discussed.



4

Application to the case of two heavy and one light particlef\"™ B™ e~
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Hamiltonian of the system in configuration space:

H = —Ay, — By, +Vs(X1) +Ny/Xg + N2/ X2 4 N3/ Xa.



Coulomb Fourier Transformed Hamiltonian in momentum space:

H(P,P') = (yg, e, |H g digr) = (1)
= (k24-p2)3 (k1 — k) (p1—p}) + Vs(ka, ks 3(p1— ph)+

_|_W2(P7 P/) _l_WS(P) P/)
operating on CF-transformed wave functiP).

(ke Kh) = (W ly) =[x o (xo) v 0 ()

andW,; are Coulomb potentials;/x;, |j = 2,3in CF representation.
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Let us notice, that the contribution from /x; potential has been elimi-
nated by CF transform.

/ —3% P _p/ /
W(P.P) = sl % (2P ) PP

where

~ o 1 N;
D= areqr

is the familiar Fourier transform of Coulomb potentigfx; and the func-
tions.Z;(P,P’), | = 2,3 are given by the integrals

Zj(P,P) = )\ILnlo clxy €71 P PRl e () ier (Xa).- (2)

The parameters;, | = 2,3, have the kinematical origin and are repre-
sented in terms of kinematic rotation matrix elements as

[ = le/Sjl.

= \/me/Zmp(1+ O(me/Mp)), Tz=—To,
what shows that; are small.




The expansion of the kerngf; (P, P’):

Z(P,P) = (ks —ky)+ (3)

iT] iT;)2 7))’
1_|JL(1)(P7 P/) 1 ( 2JI) |_(2)(|:)7 p/) + ( 3J|) |_(3)(|:)7 P’) T

HereL"(P,P’) are integrals
LO(P,P) =

— /\Ierl ; dx, el lﬁ’ﬁ(xl) (X1,P1— p’1>| L.Ulffl(xl)

which are independent gn



Sincetr, = —T13
Wo(P, P) +W5(P, P’) = Vgt ¢(p1, P71) X

4

2! 4/
where we have introduced parametet |15|.

2
{5(k1 K- L@ P+ L@ P — ..

1 Nets
21 |p — p'|

With ey = —262\ /27558 ~ —2€2\/2m,

Vati(P1,P1) =
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We arrive at the representation of the CF-transformed HamiltoRian

which plays a central role in the solution of the problem
H Ho —|—VS—|— ff—|— T2W
The kernels of operators involved i) (read

Ho(P,P') = (k$+p7) d(P—P),
Vs(P,P) = Us(k1,k})8(p1 — ph),

Vst (P,P") = U5 ¢(p1, 1) 3 (K1 — K1)
and
W(P,P) = -W@(P,P) + 2WYW(P,P") — T*W©) (P, P') +

I\ / ~ / 1 /
W(I)(Pv P) — ngf(pla pl)ﬁL(I)(Pa P )

(4)

(5)
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The structure of the Hamiltoniad suggests now the natural perturbative
scheme for solution of Schdinger equation. Let us represent the wave-
function W as power series in’

Y= Yo+ 12W, + TP, + ... (6)
We obtain the recursive set of equations%(r, l.e.
(I:I() +\75—|—\7€Cf f) L’l\',() — EL,I\J(), (7)
-1
(Ho+Vs+Vere) Wa = EWq — Z}(—l)I_S\NQI_ZS)Lst, (8)
S—=
| =1,2,3,...

The scheme(, 8) has a remarkable property, namely, the solution of the
three-body problem in framework of this scheme can be obtained in term:
of solutions of two-body problem.



The solution of the first equatio)reads

Po(P.P") = @y (ko)

P|n2 — kln2 _|_ pll’l2

I 1
P, = —Gseff E+i0)

S—
Here the kernel of the operator

~ ~ A~ ~ -1
Gseff(2) = (HO +Vs+ Vgt — Z)

on(P1);

11

9)
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~ ~ ~ ~ -1
The kernel of the operatdBsesi(z) = (H0+VS+VeCff—z IS repre-
sented through two-body Green'’s functiagpg$or potentialvs andgg ; for
potentialVg; ; by the convolution integral

Zm%ngs (K1, K7, ) 8er(P1,P1,2— {)

with counterC encircling the cut ofjs in anticlockwise direction.

So that, we have constructed the formal solution to the CF transformec
Schibdinger equation for the systeppein the continuum. The configu-
ration space wave function can be obtained ft&m

Gseff(P P/

W(X,P") = / dPWy(X,P)®(P,PM). (10)

Now one can see, that the structure of our solutionhanhd respective
series int? for W(X,P") generated from1(0) by (6) and the structure of
the representation for the Hamiltoniaf) ©utline the framework of our
approach as an alternative to Born-Oppenheimer one.
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It Is worth mentioning here, that the formalism given above is rather

general and with minor evident modifications is applicable for the three
charged particle systems for the case of different masses when the ma
of one particle is significantly smaller than the masses of others.

Let us give some explicit formulas for approximation to the wave function

W(X,P") generated by our complete formal solution. Introducigr{to

(10) we get

WX, P = g ()i (y) + T°Wo(X,PT) +O(1%). (1)
Here
Lnulji_n Xl :/dkl‘-l"lgl Xl) kln(kl)

Is the two body scattering wave function corresponding to the potential
V(X) + ng/x and Wx(X, P is given by transform0) of W, calculated
through®, from (9) by formula

Py = —Gger(E +i0)WPW,, (12)
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The complete investigation of properties of the solution/18) (s out of

the scope of this paper and will be made elsewhere. Below in this sec
tion, we consider two points which plays the key role for the formalism,
namely the singular structure of operatrand the structure of correc-
tion termW¥, (and consequentl\¥,) which possesses the most important
properties specific for all correction terrs; .
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The most singular part of the integidi P, P") has the form
LOP,P) ~ 5(k, k)W (k—K)(k,p—p") 2V(kK).  (13)

Here and in what follows we use two notational options, first®hgign
manifests the fact that the less singular terms are not presented in th
equation and second subscript 1 is omitted from definition of momentums
and coordinates . Delta-functi@f{k,k’) on unit spheres® = {k : k= 1}
andl-th derivative of delta-functiod) (k — k') are defined by
SZdRcS(R kKha(k") = f(k),
dk 3" (k—K)g(k) = (~1)'g" (k).

—00



16

The function.Z)(k,k') being a smooth function d andk’ for I-even
has the form

i TY=Y)
1 i(otl-ownSINh—

Kk y—y)
2

|0t (k) M(2K) VT (1 -y - V)|

Above formulas foiL")(P,P') can be used to compute the action/¢f
operator ortdg

V(K K) =

X

Wd(P, P") = %Il(k, K" (p,p", k) (14
where
(K, k™ / dk’ (K, k)5 (k—K).2 (k,K) i (K')

and |
Iz(pvpmak) :/dp/vgff(pap/)<k7p_p,>2 Sl?l(p/)
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Both integraldl; are singular distributions. For the second integral, it Is
useful to make a linear change of variables to get

N A
12(p,p",K) = 2‘;;/0'(1 (k,8)20%(q+p)

and then using Fourier transform f(ﬁnC (p) rewrite this integral as

2P, k) = 28 [ dyD(y,R)e " PIygEy).  @9)
Here the functiorD(y, k) IS glven by
) — ay)-Aa/k A
D(y,k) = Almo 2n 372 / dge™ (k,0)°.

It is shown that the main singular partBfy, k ) IS proportional to delta-

function, 1.e.
1

D(y, k) ~ 3o )
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The latter gives for the most singular part of the intedygd, p™, R)

Iz(pvpinak) Nefpr|n( ) (16)
N, — eff 1
"' 2m3(2m)¥2

Now, inserting formulas given above 1i3) we can represent the correc-
tion termW¥, as the integral

1 i 1 / A / A / :
Do(P.P") =~ [ dP' § dZ G(k.K.0)Gr1(pP.E—{ +i0)x (17)

|1(k/, kin) IZ(p/, pin7 R/)
This general formula can be simplified if we take instead of full Green’s
functiongs(k, k', {) its main singular part which is Green'’s function of the
two-body kinetic energy operaté(k — k’)(k* — ¢)~L. This case in fact
has the particular physical sense, since taking into account that we lef
only delta-function forf);” the resulting approximation is exactly equiva-
lent to the neglect of the short-range potentigiom the very beginning.
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Formula (L7) is transformed in this case to
Q,(P,PM) ~ (18)
1

_éNeffI (k, k™) /dp Gort(P, P, E— k2+'0)wp'“(o)

The configuration space representation ¢y which can be obtained
from formula @L0) is reduced now to the integral

Wy(X, Pi“) ~

_—Nefqu’pln /dk q"k km)geff(yao E— kZ‘HO)

Final form for this integral follows |mmed|ately from delta-functional fac-
tors ofl; and reads
1

LlJz(X, Pin) _ENefprln( ) (19)

d2
o2

[tz”%(Z) (t7 kin)LI"tCRin (X)ggff(ya Ov E— t2 T IO)}

t=kin
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This formula describes the correction teWa for the ppesystem when
strongpp interaction is neglected and at the same time is approximation
to the termWs in the general case.

The formula (9) is useful for constructing the coordinate asymptotics of
W,(X,P") asy — . One needs to use well known coordinate asymp-
totics of Coulomb Green'’s function gs— c andy’ is bound

-Neff

exp{isy—i—c-log2sy; .
any Y-g(Y')

ggff(yvy/782+ IO) ~
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This asymptotic formula gives the following asymptoticsiéf( X, P™)

W(X,P") ~ (20)
- exp{ip"y—izhlog2p"y} in
o (X, k", p",y) any (1+ O (yﬁ»
where the amplitude? has the explicit form
o (K", 9) = SN 55(0)

2 ez kmug. v (0

51:2 ? tkn _ E_tZS‘/ yn
Here byO y%i,% we have denoted terms corresponding to derivatives of

exponential factor inX9). The order of this terms shows the range of
validity of the asymptotics20), i.e. y& has to be small, what in terms of
masses must be equivalent to the lPaC'[ jmahas to be small.
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Astrophysical Examples

Now let us discuss ways of describing some reactions optreycle on

the Sun, which can be done on the ground of 3-body wave function giver
by (11). In other words, we will consider situations when in the initial
state the system consists of three charged particles in the continuum ar
the mass of one of them is much smaller than other masses.

The first example gives the reaction

p+p+e—d+v (21)

considered. As it follows from the form of the main term in the right
hand side of 11), with very good accuracy we have separation of the
Jacobi coordinates in the wave function of the initial state for the reaction

(21). This means that the rate of three-body proc2$sgan be expressed
In terms of a binary process

p+p—d+e +v (22)
This Is just the main result of paper. Now it becomes clear that the physi-
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cal background of the above result from the point of view of the few-body
theory consists in two points:

a) the system has two heavy and one light particle such that the paramet
u << 1 and therefore one can neglect the second term in the right-han
side of (L1).

b) heavy particles are slow enough to neglect higher partial waves in thel
relative motion. One should emphasize that free "effective charge of the
Initial nuclear systemZ, introduced in , can now be fixed to valide= 2
which is supported by the structure 4Gflj.

Let us consider another example of 3-body initial state

p+'Be+e, (23)
which can producéBe or ‘Li nuclei via the following reactions
/" 8B+e (or®B+e+y)
p+'Be+e
N Li+p+v
First, from the previous discussion one can see that due to different mass
of heavy particles in this case the contribution from the linear tens
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nonzero in contrast to the+ p+ e system, and this contribution should
be estimated.

If the electron In stateZ(d) is in the continuum, then again due to the
separation of Jacobi coordinate in the first term If) (the rate of the
proton capture from the initial three-body sta?&)(can be expressed via
the rate of the binary reactiqgn+’'Be—8B+.

However, the rate of the electron capture from the initial three-body state
(23), as it follows from (1), (modified for the stated)), will be defined

by the Coulomb wave function of the electron moving in the Coulomb
field with the charge = 5 instead oZ = 4 for the capture from the two-
body state’Be+e. This means that the production rate ‘df from the
three-body state?@) cannot be expressed via the binagyBe—'Li+ V)
reaction rate. Roughly speaking, the ratio of these rates will be propor-
tional to the ratio of the corresponding electron Coulomb functions at
energy in the center of the SiH. In other words,

Ye(0,E, Z=5)|" 5
We(0,Es, Z = 4)

W3
W5

7
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Now let us discuss the problem of screening of the Coulomb interaction
between two protons for the systam p+ e. We restrict ourselves by
lowest order in the ration,/m, for the three-body wave function, i.e.
consider only first term in thel(Q). It is evident, that the screening effect

In this approximation appears due to the electronic wave funmgqﬁl@y)

wherey = ;,‘eib;“rgp (8 +7), R being the distance between protons and

being the distance between electron and one of the protons. Taking th
asymptotics of this function in the region whdke>- r, one can see that
the Coulomb phases gfp wave function and electronic wave function
can cancel each other for the specific configurations of initial momentum:s
k'™ andp™ of three-body system under consideration. Hence the resulting
motion of two protons in this configuration would be described by plane
wave, which means the total screening effect.
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Conclusion

In conclusion we emphasize, that the CF-transformed three-body Hamil
tonian @) for the system of two heavy and one light particles can be
used for realization of adiabatic expansion which is alternative to the
Born-Oppenheimer one. This approach makes possible to treat screel
Ing effects on the microscopic level. The application of zero ordar in
approximation to some astrophysical reactions allows to express rates ¢
three-body processes in terms of rates of binary processes.



