Spin effects and amplitude structure in vector meson photoproduction at small x

S.V. Goloskokov

Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research,

Dubna 141980, Moscow region, Russia

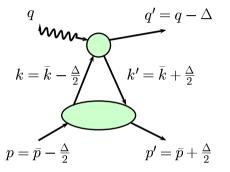
Based on: S.V. Goloskokov, P. Kroll, Eur. Phys. J. C42 (2005), 2001; hep-ph/0501242

Plan

- Vector meson leptoproduction at x << 1 in GPD approach .
- Modified PA
 - transverse degrees of freedom in wave function & hard subprocess
 - Sudakov suppression
- Structure of amplitudes in VM production
- Physical observables -cross sections, SDME A_{LL} asymmetry in light VM production

Leptoproduction of Vector Mesons in GPD approach

The process of VM production



The $L \to L$, $T \to T$ and $T \to L$ amplitudes are important in analyses of cross section and spin observales. The *k*- dependent wave function

$$\hat{\Psi}_{V} = \left[(\not{V} + M_{V}) \not{\epsilon}_{V} + \frac{2}{M_{V}} \not{V} \not{\epsilon}_{V} \not{K} - \frac{2}{M_{V}} (\not{V} - M_{V}) (\epsilon_{V} \cdot K) \right] \phi_{V}(k,\tau).$$
(1)

J. Bolz, J. Körner and P. Kroll, 1994

- V is a vector meson momentum and M_V is its mass
- ϵ_V is a meson polarization vector and K is a quark transverse momentum

The gluon contribution to the amplitudes $\gamma^*_{\mu} \rightarrow V'_{\mu}$:

$$\mathcal{M}_{\mu'+,\mu+} = \frac{e}{2} C_V \int_0^1 \frac{d\overline{x}}{(\overline{x}+\xi)(\overline{x}-\xi+i\varepsilon)} \\ \times \left\{ \left[\mathcal{H}_{\mu'+,\mu+}^V + \mathcal{H}_{\mu'-,\mu-}^V \right] H^g(\overline{x},\xi,t) \right. \\ \left. + \left[\mathcal{H}_{\mu'+,\mu+}^V - \mathcal{H}_{\mu'-,\mu-}^V \right] \widetilde{H}^g(\overline{x},\xi,t) \right\}$$
(2)

The flavor factors are $C_{\rho} = 1/\sqrt{2}$, $C_{\phi} = -1/3$.

The hard scattering amplitudes

$$\mathcal{H}_{\mu'+,\mu+}^{V} \pm \mathcal{H}_{\mu'-,\mu-}^{V} = \frac{8\pi\alpha_{s}(\mu_{R})}{\sqrt{2N_{c}}} \int_{0}^{1} d\tau \int \frac{d^{2}\mathbf{k}_{\perp}}{16\pi^{3}} \phi_{V\mu'}(\tau,k_{\perp}^{2}) \left(\overline{x}^{2}-\xi^{2}\right) f_{\mu'\mu}^{\pm}/D.$$
(3)
$$\phi_{V}(\mathbf{k}_{\perp},\tau) = 8\pi^{2}\sqrt{2N_{c}} f_{V}a_{V}^{2} \exp\left[-a_{V}^{2}\frac{\mathbf{k}_{\perp}^{2}}{\tau\bar{\tau}}\right].$$
(4)

Generally f_V , a_V may be different for TT and LL amplitudes.

The product of propagator denominators

$$D = (\mathbf{k}_{\perp}^{2} + \bar{\tau} Q^{2}) (\mathbf{k}_{\perp}^{2} + \tau Q^{2}) (\mathbf{k}_{\perp}^{2} + \bar{y} \bar{\tau} Q^{2} - i\hat{\varepsilon}) \times (\mathbf{k}_{\perp}^{2} + y \bar{\tau} Q^{2} - i\hat{\varepsilon}) (\mathbf{k}_{\perp}^{2} + \tau y Q^{2} - i\hat{\varepsilon}) (\mathbf{k}_{\perp}^{2} + \tau \bar{y} Q^{2} - i\hat{\varepsilon}) .$$
$$y = (x + \xi)/(2\xi), \qquad \bar{y} = 1 - y.$$
(5)

The model leads to the following form of helicity amplitudes

$$L \to L: \qquad \mathcal{M}_{0\,\nu,0\,\nu}^{V(g)} \propto 1$$

$$T \to L: \qquad \mathcal{M}_{0\,\nu,+\nu}^{V(g)} \propto \frac{\sqrt{-t}}{Q},$$

$$T \to T: \qquad \mathcal{M}_{+\nu,+\nu}^{V(g)} \propto \frac{\mathbf{k}_{\perp}^{2}}{QM_{V}},$$

$$L \to T: \qquad \mathcal{M}_{+\nu,0\,\nu}^{V(g)} \propto \frac{\sqrt{-t}}{Q} \frac{\mathbf{k}_{\perp}^{2}}{QM_{V}},$$

$$T \to -T: \qquad \mathcal{M}_{-\nu,+\nu}^{V(g)} \propto \frac{-t}{Q^{2}} \frac{\mathbf{k}_{\perp}^{2}}{QM_{V}}.$$
(6)

Thus, the $L \to T$ and $T \to -T$ transitions should be small and we neglect these amplitudes

The impact parameter space

- We consider Sudakov suppression of large quark-antiquark separations. These effects suppress contributions from the end-point regions, in which one of the partons in the meson wave function becomes soft and where factorization breaks down.
- Since the Sudakov factor is exponentiate in the impact parameter space- we have to work in this space.

$$\mathcal{M}_{\mu'+,\mu+}^{H} = \frac{e}{\sqrt{2N_c}} \mathcal{C}_V \int d\overline{x} d\tau \ f_{\mu'\mu}^+ H^g(\overline{x},\xi,t)$$
$$\times \int d^2 \mathbf{b} \,\hat{\Phi}_{V\mu'}(\tau,b^2) \,\hat{D^{-1}}(\tau,Q,b) \,\alpha_s(\mu_R) \,\exp\left[-S(\tau,b,Q)\right] \tag{7}$$

The renormalization scale μ_R is taken to be the largest mass scale appearing in the hard scattering amplitude, i.e. $\mu_R = \max(\tau Q, \bar{\tau}Q, 1/b)$.

Modelling the GPDs

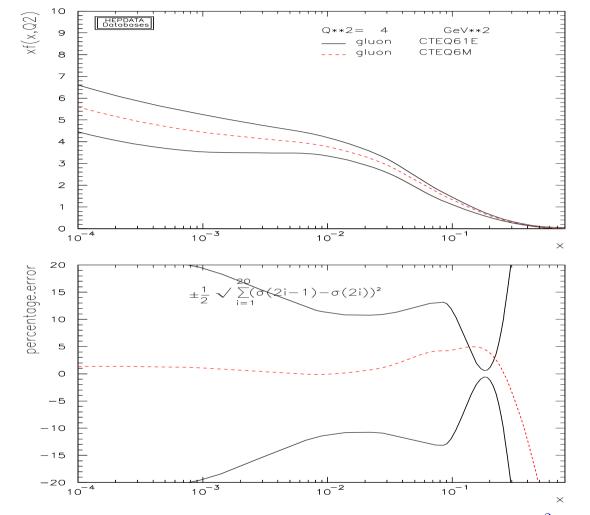
The double distributions for GPDs Radyushkin '99

$$H^{g}(\overline{x},\xi,t) = \left[\Theta(0 \le \overline{x} \le \xi) \int_{\frac{\overline{x}-\xi}{1+\xi}}^{\frac{\overline{x}+\xi}{1+\xi}} d\beta + \Theta(\xi \le \overline{x} \le 1) \int_{\frac{\overline{x}-\xi}{1-\xi}}^{\frac{\overline{x}+\xi}{1+\xi}} d\beta \right] \frac{\beta}{\xi} f(\beta,\alpha = \frac{\overline{x}-\beta}{\xi})$$

– simple factorising ansatz for the double distributions $f(\beta,\alpha,t)$

$$f(\beta, \alpha, t \simeq 0) = g(\beta) \frac{3}{4} \frac{[(1 - |\beta|)^2 - \alpha^2]}{(1 - |\beta|)^3}.$$
(8)

Model results for the GPD H^g in the small \overline{x} range. The solid (dashed, dash-dotted) line represents the GPD at $\xi = 5 (1, 0.5) \cdot 10^{-3}$. The gluon distribution - from the NLO CTEQ5M results.



Errors in gluon distribution estimated by CTEQ collaboration at $Q^2 = 4 \,\mathrm{GeV}^2$

t- dependencies and diffraction peak slopes

$$M_{ii}(t) = M_{ii}(0) \ e^{t B_{ii}/2}; \ (ii) = LL, \ TT, \ LT$$
(9)

Experimentally slope of $\gamma^* p \rightarrow V p$ is measured. Slopes of individual LL, TT, LT amplitudes are not well known.

• The combined H1 and ZEUS data on the slopes in the range $4 \text{ GeV}^2 \lesssim Q^2 \lesssim 40 \text{ GeV}^2$ are consistent with

$$B_{LL}^V = 7.5 \text{ GeV}^{-2} + 1.2 \text{ GeV}^{-2} \ln \frac{3.0 \text{ GeV}^2}{Q^2 + m_V^2}$$

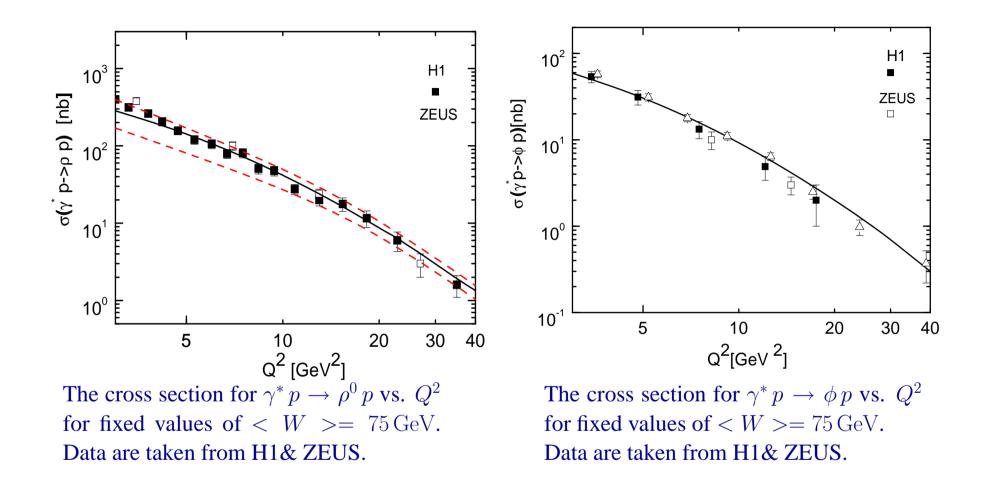
The following combination is tested in integrated cross sections $|M_{TT}|^2 \propto (\frac{f_T^V}{M_V})^2 \frac{1}{B_{TT}^V}$

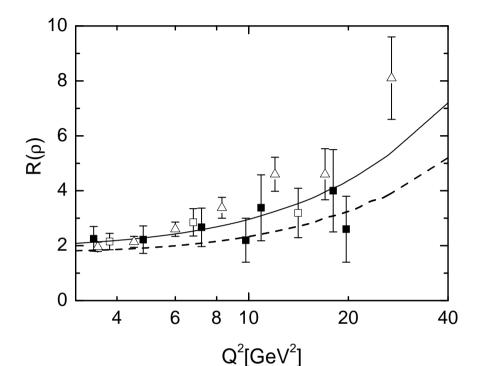
We suppose $B_{LL}^V \sim B_{LT}^V$; $B_{LL}^V \neq B_{TT}^V$. We test:

- $B_{TT}^V \sim B_{LL}^V/2; \quad M_V = m_V; \quad f_{\rho T} = .250 \,\text{GeV}$.
- $B_{TT}^V \sim B_{LL}^V$; $M_V = m_V/2$; $f_{\rho T} = .170 \,\text{GeV}$.

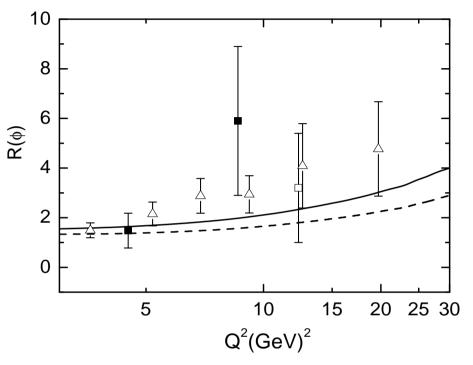
Results are the same for the cross sections. Differences are in observables where different amplitudes combinations can be tested (spin dencity matrix elements e.g.).

 $B_{TT}^V \sim B_{LL}^V/2$ in what follows.





The ratio of longitudinal and transverse cross sections for ρ production versus Q^2 at $W \simeq 75$ GeV. Data are taken from H1& ZEUS. The solid (dashed) lines are our results for the ratio of differential (integrated) cross sections, $\tilde{R}(R)$. The ratio \tilde{R} is evaluated at t = -0.15 GeV².



The ratio of longitudinal and transverse cross sections for ϕ production versus Q^2 at $W \simeq 75$ GeV. Data are taken from H1& ZEUS. The solid (dashed) lines are our results for the ratio of differential (integrated) cross sections, $\tilde{R}(R)$. The ratio \tilde{R} is evaluated at t = -0.15 GeV².

Spin density matrix elements

Our simplifications for the spin spin density matrix elements

$$N_{L} = 2|\mathcal{M}_{0+,0+}^{V(g)}|^{2},$$

$$N_{T} = \sum_{\nu} \left[|\mathcal{M}_{+\nu,+\nu}^{V(g)}|^{2} + |\mathcal{M}_{0\nu,+\nu}^{V(g)}|^{2} \right],$$

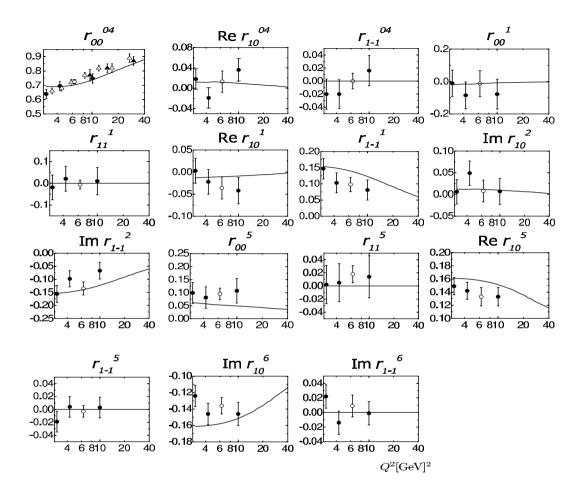
$$r_{00}^{04} = \frac{1}{N_{T} + \varepsilon N_{L}} \sum_{\nu} (|\mathcal{M}_{0\nu,+\nu}^{V(g)}|^{2} + \varepsilon |\mathcal{M}_{0\nu,0\nu}^{V(g)}|^{2})$$
Re $r_{10}^{04} = \frac{1}{1 + \epsilon \tilde{R}} \frac{1}{N_{T}} \operatorname{Re} \left[\mathcal{M}_{++,++}^{H} \mathcal{M}_{0+,++}^{H*} \right]$

$$r_{00}^{1} = \frac{-1}{1 + \epsilon \tilde{R}} \frac{2}{N_{T}} |\mathcal{M}_{0+,++}^{H}|^{2},$$

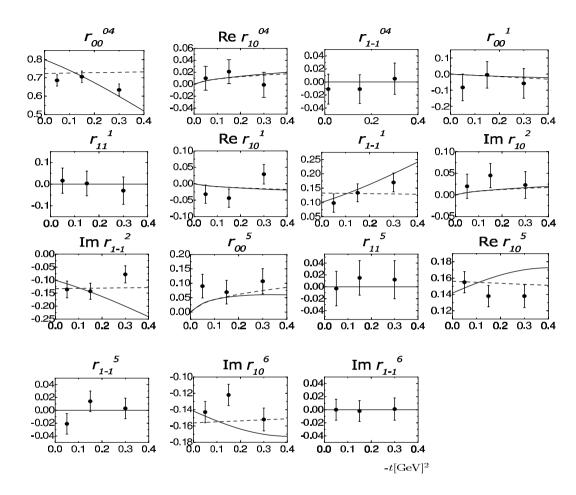
$$r_{1-1}^{1} = -\operatorname{Im} r_{1-1}^{2} = \frac{1}{1 + \epsilon \tilde{R}} \frac{1}{N_{T}} |\mathcal{M}_{++,++}^{H}|^{2},$$
.....

(10)

Good description of SDME for ρ and ϕ production .



 Q^2 dependence SDME of ρ production at $< t >= -.15 \, {\rm GeV}^2$ and $< W >= 75 \, {\rm GeV}$.



t- dependence of SDME of ρ production at $Q^2 = 5 \,\mathrm{GeV}^2$ and $\langle W \rangle = 75 \,\mathrm{GeV}$.

A_{LL} asymmetry.

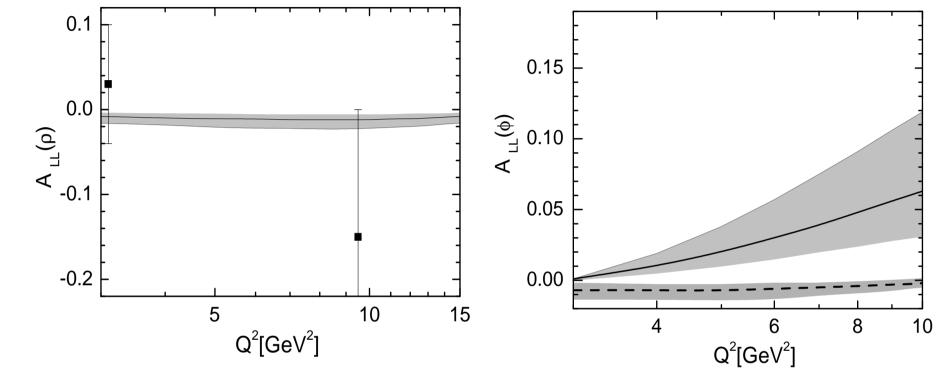
 A_{LL} asymmetry – longitudinally polarized beam and target. Integration over the azimuthal angle

- The leading term in A_{LL} is an interference between the H^g and the \widetilde{H}^g terms.

$$A_{LL}[ep \to epV] = 2\sqrt{1-\varepsilon^2} \frac{\operatorname{Re}\left[\mathcal{M}_{++,++}^H \mathcal{M}_{++,++}^{\widetilde{H}*}\right]}{\varepsilon |\mathcal{M}_{0+,0+}^H|^2 + |\mathcal{M}_{++,++}^H|^2}.$$
(11)

The ratio is of order $\langle k_{\perp}^2 \rangle / Q^2 \langle \widetilde{H}^g \rangle / \langle H^g \rangle$ and small values for A_{LL} are to be expected $-\langle \widetilde{H}^g \rangle / \langle H^g \rangle$ is small at small x.

- $A_{LL} = 0$ if the \widetilde{H}^g terms are neglected.
- At SMC energies W = 15GeV A_{LL} small
- At COMPASS energies W = 5GeV A_{LL} not small. The major contribution comes from the region $0.1 \lesssim \overline{x} \lesssim 0.2$ where $\Delta g/g$ is not small.



The A_{LL} asymmetry for ρ electroproduction versus Q^2 at W = 15 GeV, $t \simeq 0$ and $y \simeq 0.6$. Data taken from SMC

 A_{LL} for ϕ production at W = 5 GeV(solid line) and W = 10 GeV (dashed line); $y \simeq 0.6$. The shaded bands reflect the uncertainties in our predictions due to the error in the polarized gluon distribution

Conclusion

- Modified PA which consider transverse degrees of freedom and Sudakov suppressions in the subprocess give reasonable description of cross section and spin observables for light VM production in GPD approach.
- Different slopes in LL and TT amplitudes was proposed. Further theoretical study of t dependencies of amplitudes are needed .
- Experimental efforts to reduce errors in SDME are important.
 Important problem -study of t dependence of SDME -different slopes of amplitudes.
 If slopes are different problem can appear in existent experimental analyses of SDME.
- Experiments: COMPASS, HERMES.