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Introduction

The spin-3/2 particles in QFT are described by the spin-vector field Ψ
µ –

so called Rarita-Schwinger field.

Main problems and paradoxes are related with "extra"components of

spin-1/2 in Ψ
µ (Johnson,Sudarshan,1961; Velo,Zwanziger,1969).

In spite of a long history the properties of this field are discussed up to

now. Main reasons for it are related with experiments on production of

baryon resonances of spin-3/2, most investigated of them is the ∆(1232).

There are two different opinions concerning spin-1/2 sector.

Most straight way for investigation of non-leading contributions spin-1/2 is

to construct the dressed propagator with account of all contributions. So we

suggest to go in this direction.
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Introduction

The standard free lagrangian (with unphysical spin-1/2 sector) is

L = Ψ
µ
Λ

µν
Ψ

ν,

Λ
µν = (p̂ − M)gµν + A(γµpν + γνpµ) +

1

2
(3A2 + 2A+ 1)γµp̂γν +

+M(3A2 + 3A+ 1)γµγν.

Here A is an arbitrary real parameter, pµ = i∂µ.

This lagrangian is invariant under the point transformation:

Ψ
µ → Ψ

′ µ = (gµν + αγµγν)Ψν, A → A′ =
A− 2α

1 + 4α
,

with parameter α 6= −1/4.

It’s not difficult to build the corresponding free propagator G
µν
0 .

As concerned for the dressed propagator, its construction is a more

complicated issue and its total expression is unknown up to now.
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Introduction

Below we discuss the following:

X We derive an analytical expression for propagator of the interacting

Rarita-Schwinger field with accounting all spin components and

discuss its properties. The crucial point for it is the choosing of a

suitable basis.

X We discuss also dressing of Dirac fermions in search of the nearest

analogy for dressing the s=1/2 sector of Rarita-Schwinger field.

If to say about possible application for phenomenology, the considered

problem is in fact a problem of exact form of resonance curve ∆(1232).
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Basis for spin-tensor Sµν(p)

• The γ-matrix basis:

Sµν(p) =gµν · s1 + pµpν · s2+

+ p̂pµpν · s3 + p̂gµν · s4 + pµγν · s5 + γµpν · s6+

+ σµν · s7 + σµλpλpν · s8 + σνλpλpµ · s9 + γλγ5ıελµνρpρ · s10.

Here σµν = 1
2 [γ

µ, γν], p̂ = pµγ
µ, si(p

2).
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Basis

• Another known basis (p̂ basis) is constructed through the use of:

(P3/2)µν =gµν −
2

3

pµpν

p2
−

1

3
γµγν +

1

3p2
(γµpν − γνpµ)p̂,

(P1/2
11 )µν =

1

3
γµγν −

1

3

pµpν

p2
−

1

3p2
(γµpν − γνpµ)p̂,

(P1/2
22 )µν =

pµpν

p2
,

(P1/2
21 )µν =

√

3

p2
·

1

3p2
(−pµ + γµp̂)p̂pν, (P1/2

12 )µν =

√

3

p2
·

1

3p2
pµ(−pν + γν p̂)p̂.

Decomposition of Sµν(p):

Sµν(p) = (S1 + S2p̂)(P
3/2)µν + (S3 + S4p̂)(P

1/2
11 )µν + (S5 + S6p̂)(P

1/2
22 )µν+

+ (S7 + S8p̂)(P
1/2
21 )µν + (S9 + S10p̂)(P

1/2
12 )µν.
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Basis

• We suggest to use the most convenient at multiplication basis (let’s

call it Λ-basis). It is built from the operators (P3/2)µν, (P1/2
ij )µν and

off-shell projection operators Λ
±

Λ
± =

1

2

(

1 ±
p̂
√

p2

)

.

We assume
√

p2 to be the first branch of analytical function. Ten

elements of this basis look as

P1 =Λ
+P3/2, P3 =Λ

+P1/2
11 , P5 =Λ

+P1/2
22 , P7 =Λ

+P1/2
21 , P9 =Λ

+P1/2
12 ,

P2 =Λ
−P3/2, P4 =Λ

−P1/2
11 , P6 =Λ

−P1/2
22 , P8 =Λ

−P1/2
21 , P10 =Λ

−P1/2
12 ,

where tensor indices are omitted.

The decomposition of Sµν(p):

Sµν(p) =

10
∑

i=1

P
µν
i S̄i(p

2).
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Properties of Λ-basis

� The coefficients S̄i are calculated in analogy with γ-matrix ones.

� The transfer matrix from γ- to Λ- basis is not singular.

� Multiplicative properties Pi(column) × Pj(row):

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

P1 P1 0 0 0 0 0 0 0 0 0

P2 0 P2 0 0 0 0 0 0 0 0

P3 0 0 P3 0 0 0 P7 0 0 0

P4 0 0 0 P4 0 0 0 P8 0 0

P5 0 0 0 0 P5 0 0 0 P9 0

P6 0 0 0 0 0 P6 0 0 0 P10

P7 0 0 0 0 0 P7 0 0 0 P3

P8 0 0 0 0 P8 0 0 0 P4 0

P9 0 0 0 P9 0 0 0 P5 0 0

P10 0 0 P10 0 0 0 P6 0 0 0
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Dyson–Schwinger equation

Gµν = G
µν
0 + GµαJαβGβν

0 .

Here G
µν
0 and Gµν are the free and full propagators respectively, Jµν is a

self-energy contribution. The equation may be rewritten for inverse

propagators as

(S)µν = (S0)
µν − Jµν.

Using the Λ-basis for Sµν, S
µν
0 and Jµν we reduce eq.(12) to set of

equations for the scalar coefficients

S̄i(p
2) = S̄0i(p

2) + J̄i(p
2), i = 1 . . . 10

We look for the dressed propagator in the same form

Gµν =

10
∑

i=1

P
µν
i · Ḡi(p

2)
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Dyson–Schwinger equation

The existing 6 projection operators take part in the decomposition of unity,

so equation takes the form:

GµνSνλ =

6
∑

i=1

P
µλ
i .

In Λ-basis we obtain a set of equations for coefficients Ḡi.

Ḡ1S̄1 = 1,

Ḡ2S̄2 = 1,

Ḡ3S̄3 + Ḡ7S̄10 = 1,

Ḡ3S̄7 + Ḡ7S̄6 = 0,

Ḡ4S̄4 + Ḡ8S̄9 = 1,

Ḡ4S̄8 + Ḡ8S̄5 = 0,

Ḡ5S̄5 + Ḡ9S̄8 = 1,

Ḡ5S̄9 + Ḡ9S̄4 = 0,

Ḡ6S̄6 + Ḡ10S̄7 = 1,

Ḡ6S̄10 + Ḡ10S̄3 = 0.
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Solution of the Dyson–Schwinger equation

The equations are easy to solve:

Ḡ1 =
1

S̄1

, Ḡ2 =
1

S̄2

,

Ḡ3 =
S̄6

∆1
, Ḡ4 =

S̄5

∆2
, Ḡ5 =

S̄4

∆2
, Ḡ6 =

S̄3

∆1
, (1)

Ḡ7 =
−S̄7

∆1
, Ḡ8 =

−S̄8

∆2
, Ḡ9 =

−S̄9

∆2
, Ḡ10 =

−S̄10

∆1
,

where

∆1 = S̄3S̄6 − S̄7S̄10, ∆2 = S̄4S̄5 − S̄8S̄9.

Ḡi are coefficients in Λ basis.

Interacting Rarita–Schwinger field and its spin-parity content – p. 14



What does it mean?

� First two terms correspond to spin-3/2 contribution.

� Remaining eight terms should describe two spin-1/2 representations

including the mutual transitions.

� Meaning of nilpotent operators in decomposition ?

Let’s look for some analogies with Dirac fermions
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Simplest example: dressing of single Dirac fermion

Dyson–Schwinger equation for the dressed fermion propagator G(p):

G(p) = G0 + GΣG0.

We will use again the off-shell projection operators Λ
±.

P1 ≡ Λ
+ =

1

2

(

1 +
p̂
√

p2

)

, P2 ≡ Λ
− =

1

2

(

1 −
p̂
√

p2

)

.

Decomposition of any 4 × 4 matrix depending on p:

S(p) =

2
∑

M=1

PMS̄M.

D.-S. equation in this basis takes the form:

ḠM = ḠM
0 + ḠM

Σ̄
MḠM

0 , M = 1, 2.
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Dressing of single Dirac fermion

Dressed propagator:

(ḠM)−1 = (ḠM
0 )−1 − Σ̄

M.

In more detail:

(ḠM=1)−1 = (ḠM=1
0 )−1 − Σ̄

M=1 = −m0 − A(p2) +
√

p2
(

1 − B(p2)
)

,

(ḠM=2)−1 = (ḠM=2
0 )−1 − Σ̄

M=2 = −m0 − A(p2) −
√

p2
(

1 − B(p2)
)

,

where A, B are the conventional components of the self-energy

Σ(p) = A(p2) + p̂B(p2) = Λ
+
Σ

1 + Λ
−

Σ
2,

Σ
1 = A+

√

p2B, Σ
2 = A−

√

p2B.
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Dressing of single Dirac fermion (renormalization)

Standard procedure of renormalization consist in formal expansion G−1(p) in

terms of p̂ − m and choosing the renormalization constants to fulfill the

condition

G−1(p) = p̂ − m + o(p̂ − m).

With using of the projection operators basis one needs to renormalize the

scalar functions GM, depending on the argument E =
√

p2.

Let us consider the (Ḡ 1)−1 component (recall that the bare contribution is

(G1
0)

−1 = −m0 +
√

p2) and require its expansion in terms on
(
√

p2 − m
)

to

be:
(

Ḡ1
)−1

=
√

p2 − m + o
(

√

p2 − m
)

As a result we have the dressed renormalized propagator G(p), which

coincides with the standard expression.
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Dressing of single Dirac fermion (self-energy)

As an example we will consider the dressing of baryon resonance N ′

(JP = 1/2±) due to interaction with πN system. Interaction lagrangian:

Lint = gΨ
′
(x)γ5

Ψ(x) · φ(x) + h.c. for N ′ = 1/2+

and

Lint = gΨ
′
(x)Ψ(x) · φ(x) + h.c. for N ′ = 1/2−.

JP = 1/2+
p p

k

p + k

ig

�5 ig
�5

Σ(p) = ig2

∫

d4k

(2π)4
γ5 1

p̂ + k̂ − mN

γ5 1

k2 − m2
π

= I · A(p2) + p̂B(p2)
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Dressing of single Dirac fermion (self-energy)

Loop discontinuity:

∆A = −
ig2mN

(2π)2
I0, ∆B =

ig2

(2π)2
I0

p2 + m2
N − m2

π

2p2
.

Here

I0 =

∫

d4kδ
(

k2 − m2
π

)

δ
(

(p + k)2 − m2
N

)

=
π

2
θ
(

p2 − (mN + mπ)
2
) q

E
,

where λ
(

a, b, c
)

=
(

a − b − c
)2

− 4bc and q is the CMS momentum.

Parity conservation: P(πN) = (−1)l+1

l JP

0 1/2−

1 3/2+ 1/2+

2 5/2− 3/2−

. . .

So in the transition N ′(1/2+) → N(1/2+) + π(0−) the πN pair should have

the orbital momentum l = 1.
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Dressing of single Dirac fermion (self-energy)

According to threshold theorems the imaginary part of a loop should behave

as q2l+1 at q → 0. But it is not seen in ∆A,∆B.

Imaginary parts of Σ̄
M components according to (20)

Im Σ̄1 = Im
(

A+
√

p2B
)

∼ q3, Im Σ̄2 = Im
(

A−
√

p2B
)

∼ q1.

Only the first component Σ
1 demonstrates the proper threshold behavior,

i.e. the proper parity.

JP(N ′) = 1/2−

p p

k

p + k

igI igI

Σ(p) = ig2

∫

d4k

(2π)4
1

k̂ + p̂ − mN

·
1

k2 − m2
π

= IA(p2) + p̂B(p2),

∆A = −i
g2mN

(2π)2
I0, ∆B =

−ig2

(2π)2
I0

p2 + m2
N − m2

π

2p2
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Dressing of single Dirac fermion

Imaginary parts of Σ̄
1,2 now demonstrate l = 0 and l = 1 behavior

Im Σ̄
1 = −

g2I0

4
√

p2(2π)2

[

(

√

p2 + mN

)2
− m2

π

]

∼ q1,

Im Σ̄
2 =

g2I0

4
√

p2(2π)2

(

√

p2 − mN − mπ

)(

√

p2 − mN + mπ

)

∼ q3.

The considered examples show that only an „alive“ component Σ̄
1, which

has the pole 1
/(
√

p2 − m
)

demonstrates the proper threshold behavior (i.e.

the proper parity). Another component Σ̄
2, which has pole of the form

1
/(

−
√

p2 − m
)

demonstrates the opposite parity.
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Dressing of Dirac fermion with pariry violation

Let us consider a dressing of the fermion state with parity violation. Such

situation, arises, in particular for dressing of the t-quark propagator.

Dyson–Schwinger equation has the same form but the self-energy

contribution Σ contains the parity violating terms

Σ(p) = A(p2) + p̂B(p2) + γ5C(p2) + p̂γ5D(p2).

Now the basis will contain four operators:

P1 = Λ
+, P2 = Λ

−, P3 = Λ
+γ5, P4 = Λ

−γ5,

where P1,2 are projection operators and P3,4 are nilpotent ones. The

expansion of any γ-matrix depending on p now has the form

S(p) =

4
∑

M=1

PMS̄M.
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Dressing of Dirac fermion with pariry violation

This set of operators has simple multiplication properties.

P1 P2 P3 P4

P1 P1 0 P3 0

P2 0 P2 0 P4

P3 0 P3 0 P1

P4 P4 0 P2 0

Let us denote the inverse dressed and bare propagators as S(p) and S0(p)
respectively. With using of the Λ-basis the Dyson–Schwinger equation is

reduced to

S̄M =
(

S̄0

)M
− Σ̄

M, M = 1, . . . , 4.

So the problem is reduced to reversing of the known S(p) matrix

(

4
∑

M=1

PMḠM
)(

4
∑

L=1

PLS̄
L
)

= P1 + P2.
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Dressing of Dirac fermion with pariry violation

We obtain the set of equations on the unknown coefficients ḠM

Ḡ1S̄1 + Ḡ3S̄4 = 1

Ḡ2S̄2 + Ḡ4S̄3 = 1

Ḡ1S̄3 + Ḡ3S̄2 = 0

Ḡ4S̄1 + Ḡ2S̄4 = 0,

which are easy to solve. The answer is

Ḡ1 =
S̄2

∆
, Ḡ2 =

S̄1

∆
, Ḡ3 = −

S̄3

∆
, Ḡ4 = −

S̄4

∆
,

where ∆ = S̄1S̄2 − S̄3S̄4.

This example resembles the dressing of the Rarita–Schwinger field by its

algebraic structure but it contains only few degrees of freedom.
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Joint dressing of two fermions of opposite parities

Let us consider the nearest analogy to the Rarita-Schwinger field: the joint

dressing of two fermions of different parity 1/2±.

Now the Dyson-Schwinger equation has matrix form

Gij =
(

G0

)

ij
+ GikΣkl

(

G0

)

lj
, i, j, k, l = 1, 2.

The basis contains four operators:

P1 = Λ
+, P2 = Λ

−, P3 = Λ
+γ5, P4 = Λ

−γ5,

where P1,2 are projection operators and P3,4 are the nilpotent ones.

Decomposition of any γ-matrix, depending on p, has the form

S(p) =

4
∑

M=1

PMS̄M,

but now S̄M are matrices 2 × 2.
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Joint dressing of two fermions of opposite parities

This set of operators has very simple multiplicative properties.

P1 P2 P3 P4

P1 P1 0 P3 0

P2 0 P2 0 P4

P3 0 P3 0 P1

P4 P4 0 P2 0

The Dyson-Schwinger equation reduces to the matrix equations:

Ḡ1S̄1 + Ḡ3S̄4 = E2,

Ḡ2S̄2 + Ḡ4S̄3 = E2,

Ḡ1S̄3 + Ḡ3S̄2 = 0,

Ḡ4S̄1 + Ḡ2S̄4 = 0,

where E2 is the unit matrix 2 × 2.
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Joint dressing of two fermions of opposite parities

Solution of D.–S. equation:

Ḡ1 =
[

S̄1 − S̄3

(

S̄2

)−1
S̄4

]−1

, Ḡ2 =
[

S̄2 − S̄4

(

S̄1

)−1
S̄3

]−1

,

Ḡ3 = −
[

S̄1 − S̄3

(

S̄2

)−1
S̄4

]−1

S̄3

(

S̄2

)−1
, Ḡ4 = −

[

S̄2 − S̄4

(

S̄1

)−1
S̄3

]−1

S̄4

(

S̄1

)−1
.

Now let us concretize these general formulae. Suppose that we have two

fermions of opposite parities, but there is no parity violation in lagrangian. It

means that the diagonal loops contain only the I and p̂

1

2

1

2
Σii ∼ I , p̂,

while the non-diagonal ones should have γ5

1

2

2

1
Σij ∼ γ5, p̂γ5 for i 6= j
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Joint dressing of two fermions of opposite parities

So the decomposition of inverse propagator in this basis has the form

S(p) = P1

(

−m1 + E − Σ̄
(1)
11 0

0 −m2 + E − Σ̄
(1)
22

)

+ P2

(

−m1 − E − Σ̄
(2)
11 0

0 −m2 − E − Σ̄
(2)
22

)

+ P3

(

0 −Σ̄
(3)
12

−Σ̄
(3)
21 0

)

+ P4

(

0 −Σ̄
(4)
12

−Σ̄
(4)
21 0

)

.
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Joint dressing of two fermions of opposite parities

Substituting all into general solution, we have the dressed matrix propagator

G =Λ
+

(

−m2−E−Σ̄
2
22

∆1
0

0
−m1−E−Σ̄

2
11

∆2

)

+ Λ
−

(

−m2+E−Σ̄
1
22

∆2
0

0
−m1+E−Σ̄

1
11

∆1

)

+

+Λ
+γ5

(

0 −
Σ̄

3
12

∆1

−
Σ̄

3
21

∆2
0

)

+ Λ
−γ5

(

0 −
Σ̄

4
12

∆2

−
Σ̄

4
21

∆1
0

)

.

(2)

Here

∆1 =
(

− m1 + E − Σ̄
2
11

)(

− m2 − E − Σ̄
2
22

)

− Σ̄
3
12Σ̄

4
21,

∆2 =
(

− m1 − E − Σ̄
1
11

)(

− m2 + E − Σ̄
1
22

)

− Σ̄
4
12Σ̄

3
21 = ∆1

(

E → −E
)

.

The appearance of nilpotent operators in decomposition (2) is an indication

for transitions between states of different parities.
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In search of analogy

Summarizing our consideration of the dressing of Dirac fermions:

1) We found very convenient the using of the projection operators

Λ
± =

(

1 ± p̂/
√

p2
)

/2 to solve the Dyson-Schwinger equations.

2) Λ
± are very useful in another aspect: its coefficients have the definite

parity. There is such correspondence: the parity of the field Ψ is the

parity of „alive“ component Λ
+, which has the pole 1

/

(E − m).

Another component Λ
− which has the pole 1

/

(−E − m) demonstrates

the opposite parity.

3) In contrast to boson case, even if the interactions conserve the parity,

the loop transitions between different parity fields are not zeroth.

4) The joint dressing of two fermions has different picture depending of

parities of mixing fields.

J
P = 1/2± ⇔ J

P = 1/2±

Λ
+ ⇐⇒ Λ

+

Λ
− ⇐⇒ Λ

−

J
P = 1/2± ⇔ J

P = 1/2∓

Λ
+ ⇐⇒ Λ

−

Λ
− ⇐⇒ Λ

+
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Spin-parity of the Rarita-Schwinger field

Studying the dressing of Dirac fermions gives us some hint: presence of the

nilpotent operators P7—P10 in decomposition of propagator Gµν(p) is an

indication on the transitions between components of opposite parities 1/2±.

To make sure in this conclusion, we can calculate loop contributions in

propagator.

As an example we will take the standard interaction lagrangian πN∆

Lint = gπN∆ Ψ
µ
(x)(gµν + zγµγν)Ψ(x) · ∂νφ(x) + h.c. . (3)

Here z is arbitrary parameter.

The one-loop self-energy contribution is

ν µ
p p

k

p+ k

−→ −→

Jµν(p) = −ig2
πN∆

∫

d4k

(2π)4
(gµρ+zγµγρ)kρ 1

p̂ + k̂ − mN

kλ(gλν+zγλγν)
1

k2 − m2
π

.
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Spin-parity of the Rarita-Schwinger field

Discontinuity of the loop contribution in p̂ basis.

∆J1 = −ig2I0
mN

12s
λ(s, m2

N , m2
π),

∆J2 = −ig2I0
1

24s2
(s + m2

N − m2
π)λ,

∆J3 = −ig2I0
mN

12s
(λ + 6zλ − 36z2m2

πs),

∆J4 = −ig2I0
1

24s2
[(s + m2

N − m2
π)λ + 12zsλ + 36z2s(s2

− m2
πs − 2m2

N s − m2
πm

2
N + m4

N )],

∆J5 = ig2I0
mN

4s
[(s − m2

N + m2
π)

2 + 2z(s − m2
N + m2

π)
2 + 4z2m2

πs],

∆J6 = ig2I0
1

8s2
[(s + m2

N − m2
π)(s − m2

N + m2
π)

2 + 4zs(s − m2
N + m2

π)(s − m2
N − m2

π) +

4z2s(s2
− m2

πs − 2m2
N s − m2

πm
2
N + m4

N )],

∆J7 = ig2I0

√

3

s
·

1

24s
[(s − m2

N + m2
π)λ + 4zs(2s2

− m2
πs − 4m2

N s + 2m4
N − m2

Nm2
π − m4

π) +

12z2s(s2
− m2

πs − 2m2
N s − m2

Nm2
π + m4

N )],

∆J8 = −ig2I0

√

3

s
·
zmN

6s
[(s2 + 4m2

πs − 2m2
N s + m4

− 2m2m2
π + m4

π) + 6zsm2
π],

∆J9 = ∆J7

∆J10 = −∆J8.
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Spin-parity of the Rarita-Schwinger field

Here I0 is the same base integral, arguments of function λ are the same

anywhere, but are shown only in first expression.

We saw for case of Dirac fermions that the propagator decomposition in

basis of projection operators demonstrates the definite parity. We can

expect the same property for Rarita-Schwinger field in Λ-basis. Let us

verify it by calculating the threshold behavior of imaginary part.

Indeed, after some calculations:

∆J̄1 = ∆J1 + E∆J2 ∼ q3

∆J̄2 = ∆J1 − E∆J2 ∼ q5

∆J̄3 = ∆J3 + E∆J4 ∼ q3

∆J̄4 = ∆J3 − E∆J4 ∼ q

∆J̄5 = ∆J5 + E∆J6 ∼ q

∆J̄6 = ∆J5 − E∆J6 ∼ q3.

Such a behavior indicates that the components J̄1, J̄2 exhibit the spin-parity

3/2+, while the pairs of coefficient J̄3, J̄4 and J̄5, J̄6 correspond to 1/2+, 1/2−

contributions respectively.
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Conclusions

X We obtained the general analytical expression for the interacting

Rarita-Schwinger field propagator (in "rainbow aproximation") with

account of all spin components. It solves an algebraic part of the

problem, the following step is renormalization.
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Conclusions

X We obtained the general analytical expression for the interacting

Rarita-Schwinger field propagator (in "rainbow aproximation") with

account of all spin components. It solves an algebraic part of the

problem, the following step is renormalization.

X We found that the nearest analogy for dressing in the spin-1/2 sector

is the joint dressing of two Dirac fermions of opposite parities.

Calculation of the self-energy contributions in case of ∆ isobar

confirms that in the Rarita-Schwinger field besides the leading

spin-3/2 contribution there are also two spin-1/2 components of

opposite parities.
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Conclusions

X We obtained the general analytical expression for the interacting

Rarita-Schwinger field propagator (in "rainbow aproximation") with

account of all spin components. It solves an algebraic part of the

problem, the following step is renormalization.

X We found that the nearest analogy for dressing in the spin-1/2 sector

is the joint dressing of two Dirac fermions of opposite parities.

Calculation of the self-energy contributions in case of ∆ isobar

confirms that in the Rarita-Schwinger field besides the leading

spin-3/2 contribution there are also two spin-1/2 components of

opposite parities.

X We suppose that an accurate dressing (and renormalization) of the

Rarita-Schwinger field propagator is the more adequate approach for

description of data on ∆ production. As for renormalization – work in

progress.
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