Extracting the Sivers function from polarized SIDIS data and making predictions

Alexei Prokudin

Università di Torino and INFN Sezione di Torino

In collaboration with M. Anselmino, M. Boglione, U. D'Alesio, F. Murgia, and A. Kotzinian

based on Phys. Rev. D71 (2005) 074006 and hep-ph/0507181

(日) (同) (三) (三)

Outline of this talk

- 1 Polarized SIDIS
 - Sivers Effect
 - Experimental situation
 - The model
- 2 Results
 - Sivers functions
 - Description of HERMES data
 - Description of COMPASS data
 - Predictions for HERMES
 - Predictions for COMPASS
 - Predictions for JLab
 - Single spin asymmetries in Drell-Yan processes

Conclusions

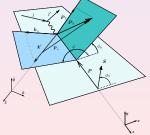
A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Polarized **SIDIS** and Sivers effect

Cross section of polarized **SIDIS**

$$\mathrm{d}\sigma^{lp^{\uparrow} \to lhX} = \sum_{q} f_{q/p^{\uparrow}}(x, \mathbf{k}_{\perp}, Q^2) \otimes \mathrm{d}\sigma^{lq^{\uparrow} \to lq^{\uparrow}} \otimes D^{h}_{q^{\uparrow}}(z, \mathbf{p}_{\perp}, Q^2)$$

where $f_{a/p^{\uparrow}}$ is the parton q distribution function, $D_{a^{\uparrow}}^{h}$ is the fragmentation function of parton q into a hadron h.



An asymmetry is defined as $A = \frac{d\sigma^{\uparrow} - d\sigma^{\Downarrow}}{d\sigma^{\uparrow} + d\sigma^{\Downarrow}}$ Let us consider a particular case of azimuthal modulations in parton density distribution, the so called Sivers effect.

D. Sivers, Phys. Rev. D41 (1990) 83; Phys. Rev. D43 (1991) 261

SIVERS EFFECT

Intrinsic transverse momentum \mathbf{k}_{\perp} of partons inside the proton plays crucial role in Sivers effect. Unpolarized quark distributions inside a transversely polarized proton may be written as

PDF

$$f_{q/p^{\uparrow}}(x, \mathbf{k}_{\perp}) = f_{q/p}(x, \mathbf{k}_{\perp}) + \frac{1}{2} \Delta^{N} f_{q/p^{\uparrow}}(x, \mathbf{k}_{\perp}) \mathbf{S}_{\tau} \cdot (\hat{\mathbf{P}} \times \hat{\mathbf{k}}_{\perp})$$
$$= f_{q/p}(x, \mathbf{k}_{\perp}) - f_{1T}^{\perp q}(x, \mathbf{k}_{\perp}) \frac{|\mathbf{k}_{\perp}|}{m_{p}} \sin(\varphi - \phi_{S})$$

where $\Delta^N f_{q/p^{\uparrow}}(x, \mathbf{k}_{\perp})$ is the so called Sivers function which must comply with the following positivity bound

$$\left|\frac{\Delta^N f_{q/p^{\uparrow}}(x, \mathbf{k}_{\perp})}{2f_{q/p}(x, \mathbf{k}_{\perp})}\right| \leq$$

ゆ く き く き く

SIVERS EFFECT

Intrinsic transverse momentum \mathbf{k}_{\perp} of partons inside the proton plays crucial role in Sivers effect. Unpolarized quark distributions inside a transversely polarized proton may be written as

PDF

$$f_{q/p^{\uparrow}}(x, \mathbf{k}_{\perp}) = f_{q/p}(x, \mathbf{k}_{\perp}) + \frac{1}{2} \Delta^{N} f_{q/p^{\uparrow}}(x, \mathbf{k}_{\perp}) \mathbf{S}_{\tau} \cdot (\hat{\mathbf{P}} \times \hat{\mathbf{k}}_{\perp})$$
$$= f_{q/p}(x, \mathbf{k}_{\perp}) - f_{1T}^{\perp q}(x, \mathbf{k}_{\perp}) \frac{|\mathbf{k}_{\perp}|}{m_{p}} \sin(\varphi - \phi_{S})$$

The arising SSA has the following form $A_{UT}^{sin(\phi_h-\phi_S)}=$

$$\sum_{q} d\{\phi_h \phi_S \mathbf{k}_{\perp}\} \Delta^N f_{q/p^{\uparrow}}(x, \mathbf{k}_{\perp}) \sin(\varphi - \phi_S) \frac{d\hat{\sigma}^{\ell q \to \ell q}}{dQ^2} J \frac{z}{z_h} D_q^h(z, \mathbf{p}_{\perp}) \sin(\phi_h - \phi_S) d\hat{\sigma}^{\ell q \to \ell q} d\hat{\sigma}^{\ell q \to \ell q}$$

$$2\pi \sum d\phi_h d^2 \mathbf{k}_\perp f_q(x, \mathbf{k}_\perp) \frac{d\hat{\sigma}^{\ell q \to \ell q}}{dQ^2} J \frac{z}{z_h} D^h_q(z, \mathbf{p}_\perp)$$

Alexei Prokudin

We take into account dependence of parton distribution functions and fragmentation functions on intrinsic transverse momenta k_{\perp} and p_{\perp} :

$$f_q(x, \mathbf{k}_{\perp}^2) = f_q(x) \frac{1}{\pi \langle \mathbf{k}_{\perp}^2 \rangle} e^{-\frac{\mathbf{k}_{\perp}^2}{\langle \mathbf{k}_{\perp}^2 \rangle}} ,$$
$$D_h^q(z, \mathbf{p}_{\perp}^2) = D_h^q(z) \frac{1}{\pi \langle \mathbf{p}_{\perp}^2 \rangle} e^{-\frac{\mathbf{p}_{\perp}^2}{\langle \mathbf{p}_{\perp}^2 \rangle}} ,$$

the unpolarised cross section becomes dependent on $\langle p_{\perp}^2 \rangle$ and $\langle k_{\perp}^2 \rangle$.

$$\frac{\mathrm{d}^{5}\sigma^{ep \to ehX}}{\mathrm{d}x\mathrm{d}y\mathrm{d}z\boldsymbol{P}_{T}\mathrm{d}\boldsymbol{P}_{T}\mathrm{d}\boldsymbol{\phi}_{h}} \propto \left\{ \left[1 + (1-y)^{2} \right] - 4\frac{\sqrt{1-y}(2-y)\langle k_{\perp}^{2}\rangle z\boldsymbol{P}_{T}}{(\langle p_{\perp}^{2}\rangle + z^{2}\langle k_{\perp}^{2}\rangle)Q} \cos(\phi_{h}) \right\} \cdot f_{q}(x)D_{h}^{q}(z)\frac{1}{\pi\langle P_{T}^{2}\rangle}e^{-\frac{P_{T}^{2}}{\langle P_{T}^{2}\rangle}} + \mathcal{O}(k_{\perp}^{2}/Q^{2}),$$

$$where \ \langle P_{T}^{2}\rangle = \langle p_{\perp}^{2}\rangle + z^{2}\langle k_{\perp}^{2}\rangle$$

We take into account dependence of parton distribution functions and fragmentation functions on intrinsic transverse momenta k_{\perp} and p_{\perp} :

$$f_q(x, \mathbf{k}_{\perp}^2) = f_q(x) \frac{1}{\pi \langle \mathbf{k}_{\perp}^2 \rangle} e^{-\frac{\mathbf{k}_{\perp}^2}{\langle \mathbf{k}_{\perp}^2 \rangle}} ,$$
$$D_h^q(z, \mathbf{p}_{\perp}^2) = D_h^q(z) \frac{1}{\pi \langle \mathbf{p}_{\perp}^2 \rangle} e^{-\frac{\mathbf{p}_{\perp}^2}{\langle \mathbf{p}_{\perp}^2 \rangle}} ,$$

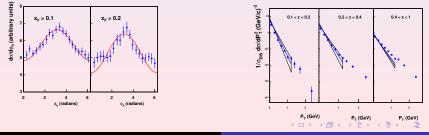
the unpolarised cross section becomes dependent on $\langle p_{\perp}^2 \rangle$ and $\langle k_{\perp}^2 \rangle$. Using unpolarised SIDIS data on $\cos(\phi_h)$ (Cahn effect) and P_T^2 dependence we obtain the values

$$egin{aligned} \langle k_{\perp}^2
angle &= 0.25 \; ext{GeV}^2, \ \langle p_{\perp}^2
angle &= 0.2 \; ext{GeV}^2 \end{aligned}$$

We take into account dependence of parton distribution functions and fragmentation functions on intrinsic transverse momenta k_{\perp} and p_{\perp} :

$$f_q(x, \mathbf{k}_{\perp}^2) = f_q(x) \frac{1}{\pi \langle \mathbf{k}_{\perp}^2 \rangle} e^{-\frac{\mathbf{k}_{\perp}^2}{\langle \mathbf{k}_{\perp}^2 \rangle}} ,$$
$$D_h^q(z, \mathbf{p}_{\perp}^2) = D_h^q(z) \frac{1}{\pi \langle \mathbf{p}_{\perp}^2 \rangle} e^{-\frac{\mathbf{p}_{\perp}^2}{\langle \mathbf{p}_{\perp}^2 \rangle}} ,$$

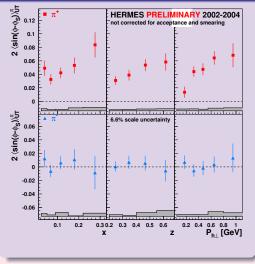
the unpolarised cross section becomes dependent on $\langle p_{\perp}^2 \rangle$ and $\langle k_{\perp}^2 \rangle$.



SPIN 05, Dubna, 27/09 - 1/10/2005

Extracting the Sivers function and making predictions 8

Experimental situation.



HERMES Collaboration. Hydrogen target. $E_e = 27.57$ GeV.

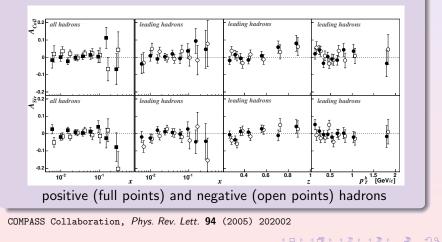
HERMES Collaboration, M. Diefenthaler, talk delivered at DIS 2005, Madison, Wisconsin (USA), April 27 -- May 1, e-Print Archive: hep-ex/0507013

(日) (同) (三) (三) Extracting the Sivers function and making predictions 9

Experimental situation

COMPASS Collaboration. Deuteron target. $E_{\mu} = 160$ GeV.

Sivers & Collins Moments



The model for the Sivers function

Let us use the following form for the Sivers functions:

$$\Delta^{N} f_{q/p^{\uparrow}}(x, \underline{k}_{\perp}) = N_{q}(x) h(\underline{k}_{\perp}) f_{q/p}(x, \underline{k}_{\perp}) ,$$

Where $f_{q/p}(x)$ is parton q distribution function,

$$N_q(x) = N_q x^{a_q} (1-x)^{b_q} rac{(a_q+b_q)^{(a_q+b_q)}}{a_q^{a_q} b_q^{b_q}} \; ,$$

$$h(k_{\perp}) = \sqrt{2e} \frac{k_{\perp}}{M} e^{-k_{\perp}^2/M^2} \text{ or } h(k_{\perp}) = \frac{2k_{\perp}M_0}{k_{\perp}^2 + M_0^2} ,$$

where N_a , a_a , b_a and M_0 (GeV/c) are parameters and q = u, d. For the sea quark contributions we assume:

$$\Delta^N f_{q_s/p^{\uparrow}}(x,k_{\perp}) = 0$$

The model for the Sivers function

Let us use the following form for the Sivers functions: $\Delta^N f_{q/p^{\uparrow}}(x, \underline{k_{\perp}}) = N_q(x)h(\underline{k_{\perp}})f_{q/p}(x, \underline{k_{\perp}}) ,$

Where $f_{q/p}(x)$ is parton q distribution function,

$$\begin{split} N_q(x) &= N_q x^{a_q} (1-x)^{b_q} \frac{(a_q+b_q)^{(a_q+b_q)}}{a_q^{a_q} b_q^{b_q}} \ ,\\ h(k_\perp) &= \sqrt{2e} \, \frac{k_\perp}{M} \, e^{-k_\perp^2/M^2} \ \text{or} \ h(k_\perp) = \frac{2k_\perp M_0}{k_\perp^2 + M_0^2} \ , \end{split}$$

We use

$$h(\mathbf{k}_{\perp}) = \frac{2\mathbf{k}_{\perp}M_0}{\mathbf{k}_{\perp}^2 + M_0^2} ,$$

where N_q , a_q , b_q and M_0 (GeV/c) are parameters and q = u, d.

Alexei Prokudin

Extracting the Sivers function and making predictions 12

 $\frac{\sin(\phi_h - \phi_s)}{\mu_T}$ approximate result

$$A_{UT}^{\sin(\phi_h-\phi_S)}(x_B, z_h, P_T) \simeq rac{\Delta\sigma_{
m siv}}{\sigma_0} \; ,$$

$$\Delta \sigma_{\rm siv}(x_{\rm B}, y, z_h, P_T) = \frac{2\pi\alpha^2}{x_{\rm B} y^2 s} \sum_q e_q^2 2 \mathcal{N}_q(x_{\rm B}) f_q(x_{\rm B}) D_q^h(z_h) \left[1 + (1-y)^2\right]$$

$$\cdot z_h P_T \frac{\sqrt{2e}\langle k_{\perp}^2 \rangle^2}{M \langle P_T^2 \rangle^2 \langle k_{\perp}^2 \rangle} \exp\left(-\frac{P_T^2}{\langle P_T^2 \rangle}\right),$$

$$\sigma_0(x_{\rm B}, y, z_h, P_T) = 2\pi \frac{2\pi\alpha^2}{x_{\rm B} y^2 s} \sum_q e_q^2 f_q(x_{\rm B}) D_q^h(z_h) \left[1 + (1-y)^2\right] \cdot \frac{1}{\pi \langle P_T^2 \rangle} \exp\left(-\frac{P_T^2}{\langle P_T^2 \rangle}\right),$$

where

$$\widehat{\langle k_{\perp}^2 \rangle} = \frac{M^2 \langle k_{\perp}^2 \rangle}{M^2 + \langle k_{\perp}^2 \rangle}, \quad \widehat{\langle P_T^2 \rangle} = \langle p_{\perp}^2 \rangle + z^2 \widehat{\langle k_{\perp}^2 \rangle}.$$

< ≣ →

э

 $A_{IIT}^{sin(\phi_h - \phi_S)}$ approximate result

$$A_{UT}^{\sin(\phi_h-\phi_S)}(x_{\scriptscriptstyle B},z_h,P_T)\simeq rac{\Delta\sigma_{
m siv}}{\sigma_0} \; ,$$

$$\Delta \sigma_{\rm siv}(x_{\rm B}, y, z_h, P_T) = \frac{2\pi\alpha^2}{x_{\rm B} y^2 s} \sum_q e_q^2 2 \mathcal{N}_q(x_{\rm B}) f_q(x_{\rm B}) D_q^h(z_h) \left[1 + (1-y)^2\right]$$

$$\cdot z_h P_T \frac{\sqrt{2e} \langle \widehat{k_\perp^2} \rangle^2}{M \langle \widehat{P_T^2} \rangle^2 \langle k_\perp^2 \rangle} \exp\left(-\frac{P_T^2}{\langle \widehat{P_T^2} \rangle}\right),$$

< ロ > < 回 > < 回 > < 回 > < 回 > .

э.

$$\sigma_0(x_{\rm B}, y, z_h, P_T) = 2\pi \frac{2\pi\alpha^2}{x_{\rm B} y^2 s} \sum_q e_q^2 f_q(x_{\rm B}) D_q^h(z_h) \left[1 + (1-y)^2\right] \\ \cdot \frac{1}{\pi \langle P_T^2 \rangle} \exp\left(-\frac{P_T^2}{\langle P_T^2 \rangle}\right),$$

$$A_{UT}^{\sin(\phi_h-\phi_S)}\propto z_hP_T$$
 and $A_{UT}^{\sin(\phi_h-\phi_S)}=0$ when $z_h=0$ or $P_T=0.$

< 同 > < 三 > < 三 >

Description of $A_{UT}^{sin(\phi_h - \phi_s)}$

$N_u =$	0.33 ± 0.13	$N_d =$	-1.00 ± 0.11
$a_u =$	0.28 ± 0.34	$a_d =$	1.19 ± 0.46
$b_u =$	0.46 ± 2.71	$b_d =$	$\textbf{3.99} \pm \textbf{4.14}$
$M_0^2 =$	$0.32 \pm 0.26 \; ({ m GeV}/c)^2$	$\chi^2/d.o.f. =$	1.08

Table: Best values of the parameters of the Sivers functions.

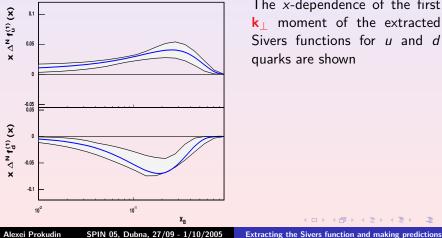
Sivers functions are better constrained by current data on $A_{UT}^{sin(\phi_h - \phi_S)}$. It is interesting to compare the Sivers functions obtained here, with those obtained by fitting the SSA observed by the E704 Collaboration in $p^{\uparrow} p \rightarrow \pi X$ processes:

$$N_u = 0.4, a_u = 3.0, b_u = 0.6$$

 $N_d = -1.0, a_d = 3.0, b_d = 0.5$

Comparison of Sivers functions

$$\Delta^{N} f_{q}^{(1)}(x) \equiv \int d^{2} \mathbf{k}_{\perp} \frac{\mathbf{k}_{\perp}}{4m_{p}} \Delta^{N} f_{q/p^{\uparrow}}(x, \mathbf{k}_{\perp}) = -f_{1T}^{\perp(1)q}(x) \,.$$

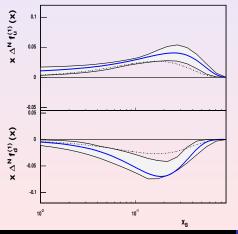


The *x*-dependence of the first k moment of the extracted Sivers functions for u and dquarks are shown

-

Comparison of Sivers functions

$$\Delta^{N} f_{q}^{(1)}(x) \equiv \int d^{2} \mathbf{k}_{\perp} \frac{\mathbf{k}_{\perp}}{4m_{p}} \Delta^{N} f_{q/p^{\uparrow}}(x, \mathbf{k}_{\perp}) = -f_{1T}^{\perp(1)q}(x) \,.$$

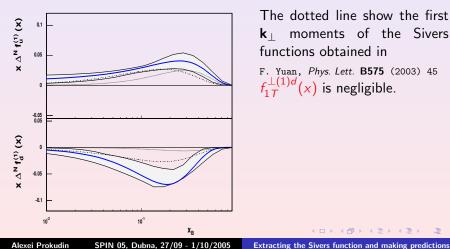


The dot-dashed line show the first \mathbf{k}_{\perp} moments of the Sivers functions obtained in A.V. Efremov, K. Goeke, S. Menzel, A. Metz and P. Schweitzer, *Phys. Lett.* **B612** (2005) 233 An assumption $f_{1T}^{\perp(1)d}(x) = -f_{1T}^{\perp(1)u}(x)$

was made.

Comparison of Sivers functions

$$\Delta^{N} f_{q}^{(1)}(x) \equiv \int d^{2} \mathbf{k}_{\perp} \, \frac{\mathbf{k}_{\perp}}{4m_{p}} \, \Delta^{N} f_{q/p^{\uparrow}}(x, \mathbf{k}_{\perp}) = -f_{1T}^{\perp(1)q}(x) \, .$$

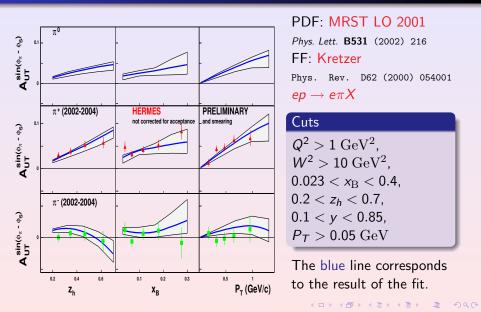


The dotted line show the first moments of the Sivers k⊥ _ functions obtained in

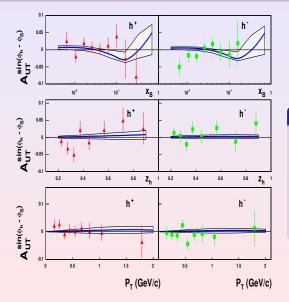
F. Yuan, Phys. Lett. B575 (2003) 45 $f_{1T}^{\perp(1)d}(x)$ is negligible.

A (1) > A (1) > A (1)

Description of HERMES data



Description of COMPASS data



PDF: MRST LO 2001 Eur. Phys. J. C4 (1998) 463 FF: Kretzer Phys. Rev. D62 (2000) 054001 $\mu D \rightarrow \mu h^{\pm} X$ Cuts $Q^2 > 1 \, {
m GeV}^2$. $W^2 > 25 \, {\rm GeV}^2$. $0 < x_{\rm B} < 1$, $0.2 < z_h < 1$, 0.1 < y < 0.9, $P_T > 0.1 \text{ GeV}$

The blue line corresponds to the result of the fit.

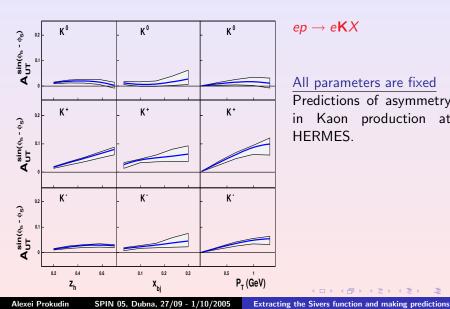
3

Alexei Prokudin

SPIN 05, Dubna, 27/09 - 1/10/2005

(日) (同) (三) (三) Extracting the Sivers function and making predictions 20

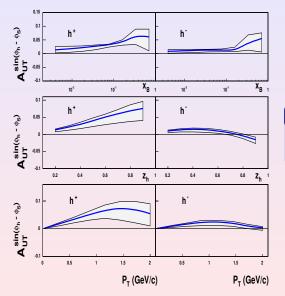
Outline Polarized SIDIS Results Conclusions Parameters Description of HERMES data Description of CO Predictions of $A_{IIT}^{sin(\phi_h-\phi_S)}$ at **HERMES**



 $ep \rightarrow e\mathbf{K}X$

All parameters are fixed Predictions of asymmetry Kaon production at in HERMES.

Predictions for COMPASS



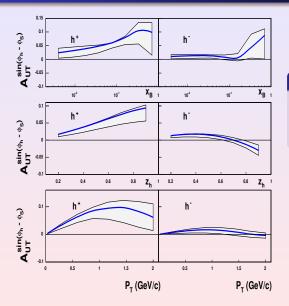
PROTON TARGET $\mu p \rightarrow \mu h^{\pm} X$

Cuts	
$0.2 < z_h < 1$,	
$P_T > 0.1 \; {\rm GeV}$	

Asymmetry is around 5%

э

Predictions for COMPASS



PROTON TARGET $\mu p \rightarrow \mu h^{\pm} X$

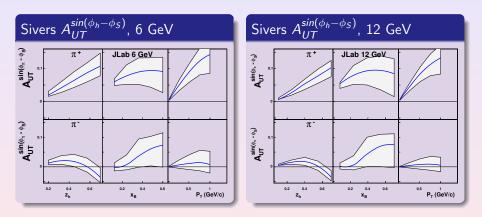
NEW Cuts	
$0.02 < x_{\rm B} < 1$,	
$0.4 < z_h < 1$,	
$P_T > 0.2 \text{ GeV}$	

Changed cuts provide higher values of the asymmetry. One should find a compromise between statistic and effect significance.

24

Predictions for JLab

JLab. Hydrogen target.



High values of asymmetry are expected for π^+ production. Region of high $x_{Bj} > 0.4$ will be explored giving a possibility to constrain behaviour of Sivers functions.

Single spin asymmetries in Drell-Yan processes

$$A_N = rac{d\sigma^\uparrow - d\sigma^\downarrow}{d\sigma^\uparrow + d\sigma^\downarrow} \,,$$

for Drell-Yan processes, $p^{\uparrow} p \rightarrow \ell^+ \ell^- X$, $p^{\uparrow} \bar{p} \rightarrow \ell^+ \ell^- X$ and $\bar{p}^{\uparrow} p \rightarrow \ell^+ \ell^- X$, where $d\sigma$ stands for

$$\frac{d^4\sigma}{dy\,dM^2\,d^2\mathbf{q}_T}$$

and y, M^2 and \mathbf{q}_T are respectively the rapidity, the squared invariant mass and the transverse momentum of the lepton pair in the initial nucleon c.m. system.

Single spin asymmetries in Drell-Yan processes

Single spin asymmetry can only originate from the Sivers function and is given by

M. Anselmino, U. D'Alesio and F. Murgia, Phys. Rev. D67 (2003) 074010

$$\frac{\sum_{q} e_{q}^{2} \int d^{2}\mathbf{k}_{\perp q} d^{2}\mathbf{k}_{\perp \bar{q}} \delta^{2}(\mathbf{k}_{\perp q} + \mathbf{k}_{\perp \bar{q}} - \mathbf{q}_{T}) \Delta^{N} f_{q/p^{\uparrow}}(x_{q}, \mathbf{k}_{\perp q}) f_{\bar{q}/p}(x_{\bar{q}}, \mathbf{k}_{\perp \bar{q}})}{2\sum_{q} e_{q}^{2} \int d^{2}\mathbf{k}_{\perp q} d^{2}\mathbf{k}_{\perp \bar{q}} \delta^{2}(\mathbf{k}_{\perp q} + \mathbf{k}_{\perp \bar{q}} - \mathbf{q}_{T}) f_{q/p}(x_{q}, \mathbf{k}_{\perp q}) f_{\bar{q}/p}(x_{\bar{q}}, \mathbf{k}_{\perp \bar{q}})},$$

where $q = u, \bar{u}, d, \bar{d}, s, \bar{s}$ and

$$x_q = rac{M}{\sqrt{s}} e^y \qquad x_{ar{q}} = rac{M}{\sqrt{s}} e^{-y}.$$

We use the relation

$$\Delta^N f_{q/p^{\uparrow}}(x, \mathbf{k}_{\perp})_{D-Y} = -\Delta^N f_{q/p^{\uparrow}}(x, \mathbf{k}_{\perp})_{SIDIS}$$

J.C. Collins, Phys. Lett. B536 (2002) 43

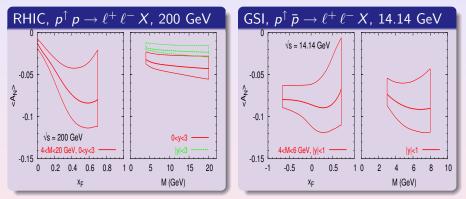
Alexei Prokudin

SPIN 05, Dubna, 27/09 - 1/10/2005

- < 同 > < 三 > < 三 >

3

Predictions for RHIC and GSI



 A_N is plotted as a function of x_F and M. The lepton pair transverse momentum has been integrated in the range $0 \le q_T \le 1$ GeV.

- Estimates of the Sivers functions for *u* and *d* quarks have been obtained. These turn out to be definitely different from zero.
- Prediction for Kaon and π^0 asymmetries for HERMES experiment are given. K^+ and π^0 asymmetries are expected to be sizable.
- A sizeable asymmetry should be measured by COMPASS collaboration once a transversely polarized hydrogen target measurement is done.
- Large values of A^{sin(φ_h-φ₅)} are expected at JLab, both in the 6 and 12 GeV operational modes, for π⁺ inclusive production.
- QCD relation $\Delta^N f_{q/p^{\uparrow}}(x, k_{\perp})_{D-Y} = -\Delta^N f_{q/p^{\uparrow}}(x, k_{\perp})_{SIDIS}$ was used to compute the single spin asymmetries in Drell-Yan processes. The predicted A_N could be measured at RHIC in p p collisions and at the proposed PAX experiment at GSI, in $p \bar{p}$ interactions. It would provide a clear test of basic QCD properties.

- Estimates of the Sivers functions for *u* and *d* quarks have been obtained. These turn out to be definitely different from zero.
- Prediction for Kaon and π^0 asymmetries for HERMES experiment are given. K^+ and π^0 asymmetries are expected to be sizable.
- A sizeable asymmetry should be measured by COMPASS collaboration once a transversely polarized hydrogen target measurement is done.
- Large values of $A_{UT}^{\sin(\phi_h \phi_S)}$ are expected at JLab, both in the 6 and 12 GeV operational modes, for π^+ inclusive production.
- QCD relation $\Delta^N f_{q/p^{\uparrow}}(x, k_{\perp})_{D-Y} = -\Delta^N f_{q/p^{\uparrow}}(x, k_{\perp})_{SIDIS}$ was used to compute the single spin asymmetries in Drell-Yan processes. The predicted A_N could be measured at RHIC in p p collisions and at the proposed PAX experiment at GSI, in $p \bar{p}$ interactions. It would provide a clear test of basic QCD properties.

- Estimates of the Sivers functions for *u* and *d* quarks have been obtained. These turn out to be definitely different from zero.
- Prediction for Kaon and π^0 asymmetries for HERMES experiment are given. K^+ and π^0 asymmetries are expected to be sizable.
- A sizeable asymmetry should be measured by COMPASS collaboration once a transversely polarized hydrogen target measurement is done.
- Large values of $A_{UT}^{\sin(\phi_h-\phi_5)}$ are expected at JLab, both in the 6 and 12 GeV operational modes, for π^+ inclusive production.
- QCD relation $\Delta^N f_{q/p^{\uparrow}}(x, k_{\perp})_{D-Y} = -\Delta^N f_{q/p^{\uparrow}}(x, k_{\perp})_{SIDIS}$ was used to compute the single spin asymmetries in Drell-Yan processes. The predicted A_N could be measured at RHIC in p p collisions and at the proposed PAX experiment at GSI, in $p \bar{p}$ interactions. It would provide a clear test of basic QCD properties.

- Estimates of the Sivers functions for *u* and *d* quarks have been obtained. These turn out to be definitely different from zero.
- Prediction for Kaon and π^0 asymmetries for HERMES experiment are given. K^+ and π^0 asymmetries are expected to be sizable.
- A sizeable asymmetry should be measured by COMPASS collaboration once a transversely polarized hydrogen target measurement is done.
- Large values of $A_{UT}^{\sin(\phi_h \phi_S)}$ are expected at JLab, both in the 6 and 12 GeV operational modes, for π^+ inclusive production.
- QCD relation $\Delta^N f_{q/p^{\uparrow}}(x, k_{\perp})_{D-Y} = -\Delta^N f_{q/p^{\uparrow}}(x, k_{\perp})_{SIDIS}$ was used to compute the single spin asymmetries in Drell-Yan processes. The predicted A_N could be measured at RHIC in p p collisions and at the proposed PAX experiment at GSI, in $p \bar{p}$ interactions. It would provide a clear test of basic QCD properties.

- Estimates of the Sivers functions for *u* and *d* quarks have been obtained. These turn out to be definitely different from zero.
- Prediction for Kaon and π^0 asymmetries for HERMES experiment are given. K^+ and π^0 asymmetries are expected to be sizable.
- A sizeable asymmetry should be measured by COMPASS collaboration once a transversely polarized hydrogen target measurement is done.
- Large values of $A_{UT}^{\sin(\phi_h \phi_S)}$ are expected at JLab, both in the 6 and 12 GeV operational modes, for π^+ inclusive production.
- QCD relation $\Delta^N f_{q/p^{\uparrow}}(x, k_{\perp})_{D-Y} = -\Delta^N f_{q/p^{\uparrow}}(x, k_{\perp})_{SIDIS}$ was used to compute the single spin asymmetries in Drell-Yan processes. The predicted A_N could be measured at RHIC in p p collisions and at the proposed PAX experiment at GSI, in $p \bar{p}$ interactions. It would provide a clear test of basic QCD properties.

- Estimates of the Sivers functions for *u* and *d* quarks have been obtained. These turn out to be definitely different from zero.
- Prediction for Kaon and π^0 asymmetries for HERMES experiment are given. K^+ and π^0 asymmetries are expected to be sizable.

<u>THANK YOU!</u>

- Large values of $A_{UT}^{\sin(\phi_h-\phi_S)}$ are expected at JLab, both in the 6 and 12 GeV operational modes, for π^+ inclusive production.
- QCD relation $\Delta^N f_{q/p^{\uparrow}}(x, k_{\perp})_{D-Y} = -\Delta^N f_{q/p^{\uparrow}}(x, k_{\perp})_{SIDIS}$ was used to compute the single spin asymmetries in Drell-Yan processes. The predicted A_N could be measured at RHIC in p p collisions and at the proposed PAX experiment at GSI, in $p \bar{p}$ interactions. It would provide a clear test of basic QCD