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What do we (PAX) want (M.Contalbrigo’s talk):
harvest top-class physics with double-polarized antiproton-proton collider at FAIR

What do we need: antiprotons of highest possible polarization.

How shall we get them: by spin filtering

Need a scrutiny of the FILTEX spin filtering of protons

? The textbook optics: optical polarizer absorbs the ”wrong” polarization.

? Spin filtering of neutrons in polarized He3 - a popular source of polarized neutrons.

? Spin filtering in storage rings - a unique practical solution for antiprotons.

? Internal atomic polarized H ↑ and D ↑ cell targets - a unique choice for a polarizer.

? Polarized atom↑ = proton↑ (deuteron↑) + electron↑. Impact of electrons?

? Electron-to-proton polarization transfer (Akhiezer et al, 50’s).: QED, the same status
as the hyperfine splitting in atoms. Exists, is large and is routinely used at MAMI,
Bates, Jlab for precision measurements of GE/GM

? H.O.Meyer’s question: what scattering within the beam does to filtering?



The transmission and scattering

? Why is the sky that blue? It is exclusively the scattered light!

? Why is the setting sun so reddish? It is exclusively the transmitted light!

N.B. We only see the transmitted light from distant stars!

? Why the sun changes its color? Transmission changes the unscattered light!

? Optical filtering: with rare exceptions one only deals with the transmitted light.

? Unique feature of storage rings: a mixing of the transmitted and scattered beam

? The technical description: the polarization dependent refraction index.

? Fermi-Akhiezer-Pomeranchuk-Lax formula:

n = 1 +
2π

p2
Nf̂(o)

The forward NN scattering amplitude f̂ (o) depends on the beam and target spins

? Polarized target is an optically active medium!



Beam pipe
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Scattering within the beam:
              Lost and found

Scattering losses

Transmitted beam

What the internal target does to the beam?
              (a poor theorists notion)

Hans Otto Meyer (1994): polarization of  the transmitted beam

is modified by polarization of particles scattered within the beam

Large effects in the FILTEX experiment (Protons, T=23 MeV,

θacc

Lost by scattering

Test Storage Ring, Heidelberg, 1992) ?



The kinematics of p-atom interactions in storage rings

? Screening of e&p Coulomb fields beyond the Bohr radius aB: incoherent quasielastic
(E) scattering off protons and electrons at

θ ∼> θmin =
αemme

√
2mpTp

=⇒ dσE = dσp
el + dσe

el

? Electron is too light a target to deflect heavy protons (Horowitz& Meyer):

θ ≤ θe = me/mp

? Dominant Coulomb pp scattering at up to

θ ∼< θCoulomb ≈
√

2παem/mpTpσ
pp
tot,nucl ≈ 100mrad

? FILTEX ring acceptance θacc = 4.4 mrad.

? Strong inequality
θmin � θe � θacc � θCoulomb

The corollaries: (i) pe scattering entirely within the stored beam, (ii) Beam losses
dominated by Coulomb pp scattering.



First warning: how do we measureσ
pp
tot,nucl in the liquid hydrogen target?

? Beam attenuation: σ̂tot(p − atom) ≡ σ̂pp
tot + +σ̂pe

tot.

? The pe X-section is gigantic:

σ̂pe
tot = σ̂e

el(> θmin) ≈ 4πα2
ema2

B ≈ 2 · 104Barn

How do we extract σpp
tot,nucl ∼ 40 mb on top of such a background?

? θ ≤ θe � angular divergence of any beam, pe scattering is entirely within the beam
and does not cause any attenuation!

? Skrinsky’s question (2004, unpublished): shall the spin filtering by e ↑ be observable?

? Milstein & Strakhovenko (2005): electrons wouldn’t work! (independent &
simultaneous observation by NNN & F.Pavlov within a very different formalism).

? Getting rid of Coulomb pp scattering in σpp
tot,nucl:

(i) measure transmitted beam intensity with acceptance > θCoulomb,
(ii) extrapolate to zero acceptance angle.



Transmission Losses vs. Scattering within the Beam

? Polarization of the transmitted beam: propagates at ZERO scattering angle, gets
polarized by absorption & elastic scattering out of the beam

? Lost & found polarization of scattered particles.

? Pertinent features of spin filtering in storage rings (the poor theorists notion):

(i) ultra-thin target,

(ii) θ ≥ θacc: scattering out of the beam pipe,

(iii) ring optics (betatron oscillations & focusing & defocusing & electron cooling &
...): transverse momentum p gets randomized between consecutive interactions with
the target,

(iv) angular divergence of the beam at the target � θacc.

? The appropriate quantum-mechanical approach: the evolution equation for the
spin-density matrix of the stored beam



The In-Medium Hamiltonian and Evolution of Transmitted Beam

? Time = distance z traversed in the medium.

Fermi Hamiltonian =Ĥ =
1

2
NF̂ (0) =

1

2
N [R̂(0) + iσ̂tot]

N = density of atoms in the target.

? The density matrix of the stored beam

ρ̂(p) =
1

2
[I0(p) + σs(p)]

I0(p) = particle density, s(p) = spin density.

? Textbook quantum-mechanical evolution for pure transmission ( θacc → 0, vanishing
scattering within the beam)

d

dz
ρ̂(p) = i[Ĥ, ρ̂(p)] = i

1

2
N(R̂ρ̂(p) − ρ̂(p)R̂)

︸ ︷︷ ︸
Real potential=Pure refraction

−
1

2
N(σ̂totρ̂(p) + ρ̂(p)σ̂tot)

︸ ︷︷ ︸
(Imaginary potential=Pure attenuation)



Evolution of Transmitted Beam Cont’d

σ̂tot = σ0 + σ1(σ · Q) + σ2(σ · k)(Q · k)
︸ ︷︷ ︸

spin−sensitive loss

,

R̂ = R0 + R1(σ · Q) + R2(σ · k)(Q · k)
︸ ︷︷ ︸

σ·Pseudomagnetic field

k = beam axis, Q = target polarization.

? Evolution of the beam polarization P = s/I0

dP /dz = −Nσ1(Q − (P · Q)P ) − Nσ2(Qk)(k − (P · k)P )
︸ ︷︷ ︸

(Polarization buildup by spin−sensitive loss)

+ NR1(P × Q) + nR2(Qk)(P × k)
︸ ︷︷ ︸

(Spin precession in pseudomagnetic field)

? Precession effects are missed in Milstein-Strakhovenko kinetic equation for spin-state
population numbers. Kinetic equation holds only if spin-density matrix is diagonal.

? Kinetic equation is recovered from evolution of the density matrix upon averaging
over precessions - the case in storage rings and pure transverse or longitudinal
polarizations.



The polarization buildup

? Coupled evolution equations after into-the-beam scattering

d

dz

(
I0

s

)

= −N

(
σ0(> θmin) Qσ1(> θmin)
Qσ1(> θmin) σ0(> θacc)

)

·

(
I0

s

)

,

? Solutions
∝ exp(−λ1,2Nz)

with eigenvalues
λ1,2 = σ0 ± Qσ1

? Reduction to Meyer’s equation for pure transverse polarizations:

dP

dz
= −Nσ1Q(1 − P 2)

? Polarization buildup
P (z) = − tanh(Qσ1Nz)

? Any spin-dependent loss filters spin of the stored beam:



Impact of Scattering within the Beam upon Spin Filtering

? Quasielastic (E) p + atom → p′scatt + e + precoil, q = momentum transfer:

dσ̂E

d2q
=

1

(4π)2
F̂(q)ρ̂F̂ †(q) =

1

(4π)2
F̂e(q)ρ̂F̂e

†(q) +
1

(4π)2
F̂p(q)ρ̂F̂p

†(q)

? Lost and found: scattering within the beam at θ ≤ θacc

? Formal derivation from multiple-scattering theory: unitarity(loss-recovery balance) is
satisfied rigorously.

d

dz
ρ̂ = i[Ĥ, ρ̂] = i

1

2
N(R̂ρ̂(p) − ρ̂(p)R̂)

︸ ︷︷ ︸
Ignore this precession

−
1

2
N(σ̂totρ̂(p) + ρ̂(p)σ̂tot)

︸ ︷︷ ︸
Evolution by loss

+ N

∫ Ωacc d2q

(4π)2
F̂(q)ρ̂(p − q)F̂ †(q)

︸ ︷︷ ︸
Lost and found: scattering within the beam



Needle-Sharp Scattering off Electrons: θe � θacc

? Breit pe interaction (1929): Coulomb (+ unimportant relativistic corrections) +
hyperfine + tensor + spin-orbit (negligible small & unimportant to us)

U (q) = αem

{ 1

q2
+ µp

(σpq)(σeq) − (σpσeq
2

4mpmeq2

}

σ̂e
tot = σe

0︸︷︷︸
Coulomb

+ σe
1(σp · Qe) + σe

2(σp · k)(Qe · k)
︸ ︷︷ ︸

Coluomb×(Hyperfine+Tensor)

? Horowitz-Meyer (1994): substantial transfer of polarization to scattered protons!

? Stronger transfer of longitudinal polatization: σe
2 = 2σe

1. (property inherent to
Buttimore et al. helicity amplitudes)

? Polarization of scattered protons P f (transverse case):

σe
0P f = σe

0P + σe
1Qe

? one-to-one beam-to-scattered proton spin transfer (Milstein-Strakhovenko)



? Pure electron contribution to the loss of transmitted beam (suppress θ > > θmin)

1

2

d

dz
I0(p)(1 + σ · P (p)) = −

1

2
NI0(p)[ σe

0 + σe
1PQe︸ ︷︷ ︸

particle number loss

+σ (σe
0P + σe

1Qe)︸ ︷︷ ︸
selective spin loss

]

? Lost & found (precession-averaged) from scattering within the beam

N

∫
d2q

(4π)2
F̂e(q)ρ̂(p − q)F̂ †

e (q)

=
1

2
NI0(p)

∫
d2q

(4π)2
F̂e(q)F̂ †

e (q) +
1

2
Ns(p)

∫
d2q

(4π)2
F̂e(q)σF̂ †

e (q)

=
1

2
NI0(p)[σe

0 + σe
1(P · Q)]

︸ ︷︷ ︸
Lost&found particle number

+
1

2
NI0(p)σ[σe

0P + σe
1Qe]

︸ ︷︷ ︸
Lost&found spin

? The net effect:

σ̂tot ≡ σ̂p
abs + σ̂p

el(> θmin) + σ̂e
el(> θmin) =⇒ σ̂tot − σ̂e

el(> θmin) = σ̂p
abs + σ̂p

el(> θmin).

? Skrinsky’ concern was well taken: electrons in the target are invisible, scattering
within the beam cancels exactly the transmission losses (also Milstein & Strakhovenko).

? Sad conclusion: Farewell to electromagnetic electron-to-antiproton spin transfer...



Nuclear Spin Filtering: Nulcear pp Scattering within the Beam

? Decompose pure transmission losses (transverse polarization)

d

dz
ρ̂ = −

1

2
N(σ̂tot(> θacc)ρ̂(p) + ρ̂(p)σ̂tot(> θacc))

︸ ︷︷ ︸
Unrecoverable transmission loss

−
1

2
NI0(p)[ σel

0 (< θacc) + σel
1 (< θacc)PQ

︸ ︷︷ ︸
Potentially recoverable particle loss

+ σ (σel
0 (< θacc)P + σel

1 (< θacc)Q)
︸ ︷︷ ︸

Potentially recoverable spin loss

]

? Angular divergence of the beam at target � θacc: integrate over p
∫

d2p

∫ Ωacc d2q

(4π)2
F̂(q)ρ̂(p − q)F̂ †(q) =

[
∫

d2pI0(p)
]
·

∫ Ωacc d2q

(4π)2
F̂(q)

1

2
(1 + σP )ρ̂(q)F̂ †(q) = σ̂E(≤ θacc) ·

∫

d2pI0(p)

? The mismatch of potentially recoverable losses and scattering within the beam

∆σ̂ =
1

4
(σ̂el(< θacc)(1 + σP ) + (1 + σP )σ̂el(< θacc)) − σ̂E(≤ θacc)



? X-section of scattering within the beam (precession averaged)

σ̂E(≤ θacc) = σel
0 (≤ θacc) + σel

1 (≤ θacc)(P · Q)
︸ ︷︷ ︸

Lost & found particles

+ σ ·
(
σE

0 (≤ θacc)P ) + σE
1 (≤ θacc)Q)

)

︸ ︷︷ ︸
Lost & found spin

? The mismatch X-section operator

∆σ̂ = σel
0 (< θacc) + σel

1 (< θacc)PQe︸ ︷︷ ︸
Potentially recoverable particle loss

+ σ (σel
0 (< θacc)P + σel

1 (< θacc)Qe)︸ ︷︷ ︸
Potentially recoverable spin loss

− σel
0 (≤ θacc) + σel

1 (≤ θacc)(P · Q)
︸ ︷︷ ︸

Lost & found particles

− σ ·
(
σE

0 (≤ θacc)P + σE
1 (≤ θacc)Q

)

︸ ︷︷ ︸
Lost & found spin

= σ
(
2∆σ0P + ∆σ1Q

)

? Lost & found corrected coupled evolution equations

d

dz

(
I0

s

)

= −n

(
σ0(> θacc) Qσ1(> θacc)
Q(σ1(> θacc) + ∆σ1) σ0(> θacc) + 2∆σ0

)

·

(
I0

s

)

,



? No corrections to the equation for the particle number.

? ∆σ0,1: a mismatch between the spin of the beam taken away by the scattered
particle and the lost & found spin put back by after the particle scatteres within the
beam. In terms of standard observables (Bystricky et al.):

σel
1 (> θacc) =

1

2

∫

θacc

dΩ(dσ/dΩ)(A00nn + A00ss)

∆σ0 =
1

2
[σel

0 (≤ θacc) − σE
0 (≤ θacc)]

=
1

2

∫ θacc

θmin

dΩ
dσ

dΩ
(1 −

1

2
Dn0n0 −

1

2
Ds′0s0 cos(θlab))

∆σ1 = σel
1 (≤ θacc) − σE

1 (≤ θacc)

=
1

2

∫ θacc

θmin

dΩ
dσ

dΩ
(A00nn + A00ss − Kn00n − Ks′00s cos(θlab))

? The SAID menagerie:
A00nn = Ayy, A00ss = Axx, Kn00n = Dt, Ds′0s0 = R, Dn0n0 = D, Ks′00s = −R′

t.

? Milstein & Strakhovenko relate ∆σ0,1 to spin-flip scattering.



Polarization Buildup with Scattering within the Beam

? Coupled evolution equations after into-the-beam scattering

d

dz

(
I0

s

)

= −n

(
σ0(> θacc) Qσ1(> θacc)
Q(σ1(> θacc) + ∆σ1) σ0(> θacc) + 2∆σ0

)

·

(
I0

s

)

,

? Solutions
∝ exp(−λ1,2Nz)

with eigenvalues

λ1,2 = σ0 + ∆σ0 ± σ3

σ3 = Q
√

σ1(σ1 + ∆σ1) + ∆σ0
2,

? The polarization buildup (also Milstein&Strakhovenko)

P (z) = −
(σ1 + ∆σ1) tanh(σ3Nz)

σ3 + ∆σ0 tanh(σ3Nz)

? The effective small-time polarization cross section

σP ≈ −Q(σ1 + ∆σ1)



Pauli principle and Spin Deep under the Coulomb peak

? ”Normal” elastic scattering into θ ≤ θacc = 4.4 · 10−3 is entirely negligible.

? ”Abnormal” θacc � θCoulomb - scattering within the beam is deep under the Coulomb
peak.

? Entirely inaccessible in scattering experiments, important for storage rings. Need
extrapolations of hadronic amplitudes.

? Pauli principle =⇒ double-spin dependence from exchange interaction

F̂Coulomb =
1

2
F(θ) +

1

4
(1 + σ1 · σ2)F(π − θ)

= F0(θ)
︸ ︷︷ ︸

Coulomb singularity 1/θ2

+ F1(θ)
︸ ︷︷ ︸

Constant

σ1 · σ2

? Exchange interaction stronger than Breit interaction of magnetic moments of protons

? Add to F1(θ) similar (and typically larger) two-spin nuclear interaction amplitudes.

? 1/θ2 enhancement makes interference ∝ F0(θ)F1(θ) substantial.

? Upon azimuthal integrations spin-flips don’t interfere with the dominant F0(θ)



Understanding the FILTEX result according to Meyer-Horowitz:

? The FILTEX polarization rate as published in 1993: σP = 63 ± 3(stat.) mb, a
fantastic 20σ measurement!

? Better understanding of target density & polarization (F.Rathmann, PhD):
σP = 72.5 ± 5.8(stat. + sys.) (stat.)

? The expectation from filtering by pure nuclear scattering: σP,expected = 122 mb.

? H.O. Meyer: correct σP for scattering within the beam. Strong effect of
Coulomb-nuclear interference ∝ F0(θ)F1(θ). Enhanced by log(θ2

acc/θ
2
min) ≈ 11.

Meyer’s reevaluation σ1(> θacc) = 83 mb (SAID of 94) instead of 122 mb

? Add scatterinhg within the beam off polarized electrons: δσep
1 = −70 mb

? Add scattering within the beam off polarized protons: δσep
1 = +52 mb

? Net result: σP = 65 mb. Good but accidental agreement with FILTEX!

? What went wrong: : Double counting, Meyer should have started with loss from
θ > θmin, and then add scattering within the beam.

Still, Meyer asked right questions and was infinitesimally close to the correct answer!



Understanding the FILTEX result: why negligible small ∆σ1,0

? NNN-Pavlov: SAID-SP05 for filtering by loss: σ1(> θacc) = −85.6 (only marginal
changes from SAID to Nijmegen databases).

? Spin deep under the Coulomb peak:

F̂ = F0(θ)
︸ ︷︷ ︸

Coulomb ∝ 1/θ2

+ F1(θ)
︸ ︷︷ ︸

Breit+Nuclear

σ1 · σ2 + (other two − spin terms)

? Treatment is identical to that of the Breit proton-electron interaction.

? The dominant spin-dependence from the interference ∝ F0(θ)F1(θ).

? Scattering within the beam cancels filtering by transmission losses:

σ̂tot ≡ σ̂p
abs + σ̂p

el(> θmin) =⇒ σ̂tot − σ̂p
el(θmin ≤ θ ≤ θacc) = σ̂p

abs + σ̂p
el(> θacc).

? Nonrelativistic heavy particles love retaining their spin: very small mismatch
X-section

∆σ1 ≈ −6 · 10−3 mb

? Full agreement with Milstein & Strakhovenko result in terms of the spin-flip
X-section.



G-parity

N

NN

+
Annihilation needs
  extra modelling

Bonn meson exchange: well 
defined G-parity is crucial

phenomenological optical potential (model A)* Annihilation:

* Annihilation:

N

pure field-theoretic baryon exchange (model C)

Mesons
N

N

Mesons
N

N

Mesons
N

N
=

* Annihilation: hybrid model: baryon exchange for two-meson channels
                          optical potential for the rest (model D)

Juelich models for antiproton-proton interaction (also Paris, Nijmegen...)

Good degree of success  with total, elastic, annihilation  X-sections,
diifferential dσ(elastic), analyzing power (model A does best job)

Approximation by two-meson 
channels, not quite realistic
strength
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Conclusions: what is the future for PAX?

? FILTEX: an important proof of the principle of spin filtering.

? A consensus between theorists (Budker Institute & IKP FZJ): Polarized electrons in
polarized atoms wouldn’t polarize antiprotons in storage rings.

? H.O. Meyer: scattering within the beam + Coulomb-nuclear interference reduce the
expected σP = 122 mb down to σP = 85.6 mb (SAID-SP05).

? Still slight disagreement between experiment σP = 72.5 ± 5.8(stat. + sys.)
(FILTEX) and theory, σP = 85.6mb ( Meyer & Budker Institute & IKP FZJ).

? Solution for PAX: spin filtering by nuclear antiproton-proton interaction .

? Theoretical models are encouraging: substantial filtering of practical interest
(Contalbrigo’s talk)

? Spin filtering of antiprotons must be optimized experimentally with antiprotons
available elsewhere (AD ring at CERN?).


