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1 INTRODUCTION

It is difficult to separate semiclassical and quantum methods of de-
scription of spin dynamics because any spin effect is quantum. The
semiclassical method consists in averaging spin operators and using
an average spin. Such an approach is presented, for example, by
the well-known Thomas-Bargmann-Michel-Telegdi (T-BMT) equa-
tion. We also use one of purely quantum methods and calculate an
evolution of a two-component spin wave function. Of course, every
method should give the same result. As distinct from other works,
we use the cylindrical coordinate system. This system can be helpful
if the ring is circular and we need to obtain the analytical solution
of problem.
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2 GENERAL EQUATIONS OF PARTICLE AND SPIN

MOTION

The Thomas-Bargmann-Michel-Telegdi (T-BMT) equation uses the
Cartesian coordinates. The transformation of the T-BMT equation
to the cylindrical coordinates should be performed with an allowance
for oscillatory terms in the particle motion equation.

The particle motion is described by the Lorentz equation

dp

dt
= e (E + β × B) , β =

v

c
.

It is convenient to use the unit vector of momentum direction, N =
p/p, which defines the direction of particle motion. The equation of
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particle motion takes the form

dN

dt
= ω × N ,

ω = − e

γm











B − N × E

β











,

where ω is the angular velocity of the particle rotation.
The spin motion is determined by the T-BMT equation

ds

dt
= ΩT−BMT × s,

ΩT−BMT = − e

2m
{











g − 2 +
2

γ











B

−(g − 2)γ

γ + 1
β(β · B) −











g − 2 +
2

γ + 1











(β × E)},

(1)

where s is the spin vector, that is the expectation value of the quan-
tum mechanical spin operator.
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3 CORRECTIONS TO THE PARTICLE MOTION IN

THE HORIZONTAL PLANE

Vertical betatron oscillations and orbit distortions change the plane
of the particle motion. The (pseudo)vector of angular velocity be-
comes tilted.
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The angle Φ between two positions of rotating vector N in the
tilted plane is not equal to the angle φ between two corresponding
horizontal projections. Therefore, the vertical betatron oscillations
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and orbit distortions change the instantaneous angular velocity of
particle motion. This effect can be calculated.

The instantaneous angular velocity of particle rotation in the hor-
izontal plane is given by

φ̇ ≡ dφ

dt
=

(N‖ × Ṅ‖) · ez

|N‖|2
= ωz − o, (2)

o =
(ωxNx + ωyNy)Nz

1 − N2
z

=
(ωρNρ + ωφNφ)Nz

1 − N2
z

. (3)

Eqs. (2),(3) are exact. The validity of these equations can be
confirmed.

The correction o is usually small and even negligible. The particle
momentum deflection is given by

Nρ =
pρ

p
= ρ0 sin (ωrt + α),

Nz =
pz

p
= ψ0 sin (ωvt + β),
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where ρ0 and ψ0 are the angular amplitudes of radial and vertical
CBOs.

With an allowance for the orders of quantities

ωρ ∼ ψ0, ωφ ∼


























ρ2
0

ψ2
0
,

Nρ ∼ ρ0, Nφ ≈ ±1, Nz ∼ ψ0,

we obtain that the quantity o is of the third order in the angular
amplitudes ρ0 and ψ0. Moreover, it oscillates and therefore it aver-
ages to zero. If we take into account only second-order terms in the
angular amplitudes and the average particle orbit is not tilted, the
quantity o is negligible. Approximately,

φ̇ = ωz = − e

γm











Bz −
(N × E)z

β











. (4)
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4 EQUATION OF SPIN MOTION IN STORAGE

RINGS

The transformation of the T-BMT equation to the cylindrical co-
ordinate system leads to the equation

ds

dt
= ωa × s, ωa = Ω − φ̇ez. (5)

In this equation, ωa is the the angular velocity of spin rotation in
the cylindrical coordinates. The corresponding angular velocity in
the Cartesian coordinates equals Ω. The difference between these
quantities is caused by the rotation of the axes eρ and eφ.

Formulae for the electric dipole moment (EDM) can be obtained
from the corresponding formulae for the anomalous magnetic mo-
ment with the substitution B→E, E→−B, g−2→η.

The allowance for the particle EDM leads to the modification of
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the T-BMT equation that takes the form

ds

dt
= Ω × s, Ω = ΩT−BMT + ΩEDM ,

ΩT−BMT = − e

m





















a +
1

γ











B − aγ

γ + 1
β(β · B)

−










a +
1

γ + 1











(β × E)











,

ΩEDM = − eη

2m











E − γ

γ + 1
β(β · E) + β × B











, (6)

where ΩT−BMT is defined by Eq. (1), a = (g − 2)/2, and η =
4dm/e.

As a rule, we can neglect the term
γ

γ + 1
β(β · E).

10



This formula for the angular velocity of spin rotation in the cylin-
drical coordinates is exact:

ωa = − e

m



















aB − aγ

γ + 1
β(β · B)

+











1

γ2 − 1
− a











(β × E) +
1

γ











B‖ −
1

β2 (β × E)‖











+
η

2











E − γ

γ + 1
β(β · E) + β×B





























+ oez. (7)

After neglecting small terms, this equation takes the form

ωa = − e

m



















aB − aγ

γ + 1
β(β · B) +











1

γ2 − 1
− a











(β × E)

+
1

γ











B‖ −
1

β2 (β × E)‖











+
η

2
(E + β × B)



















. (8)
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5 EFFECT OF VERTICAL BETATRON

OSCILLATIONS ON SPIN DYNAMICS

In the g−2 experiment, the correction for the vertical BO (pitch)
is about 0.2 ppm. This correction is very important. The effect has
been described by F. Farley
[F.J.M. Farley, Phys. Lett. B 42, 66 (1972).]

The result has been confirmed by J. Field and G. Fiorentini
[J.H. Field and G. Fiorentini, Nuovo Cim. A21, 297 (1974)]
and by computer simulations.

The horizontal BO (yaw) does not give any significant corrections.
The theory of spin oscillations in the g−2 experiment can be de-

veloped in the very general form. The spin motion perturbed by the
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vertical BO is described by the equation

ds

dt
=

{

a0 + a3 cos [2(ωpt + φp)]
}

(e3 × s)

+a2 cos (ωpt + φp)(e2 × s) + a1 sin (ωpt + φp)(e1 × s),

where a1 and a2 are first-order quantities and a3 is a second-order
quantity in the angular amplitude of pitch, ψ0. The quantity ωp is
the angular frequency of pitch.

If the pitch correction is small, it can be determined exactly:

ωa =< φ̇ >= a0 +
a0(a

2
1 + a2

2) − 2a1a2ωp

4(a2
0 − ω2

p)

+
a0(a

2
1 − a2

2)

4(a2
0 − ω2

p)
〈cos 2(a0t + φ0)〉 ·

1 + s2
⊥

1 − s2
⊥

.

In preceding works, both electric and magnetic focusing have been
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considered. The coefficients ai (i = 0, 1, 2, 3) are equal to

a0 = λω0











1 − γ − 1

2γ
ψ2

0











, a1 = −ω0
γ − 1

γ
ψ0,

a2 = −λfωpψ0, a3 = λω0
γ − 1

2γ
ψ2

0,

where λ equals 1 and −1 for negative and positive muons, respec-
tively. The factor f is

f = 1 + aγ − 1 + a

γ
= 1 + aβ2γ − 1

γ

and
f = 1 + aγ

for electric and magnetic focusing, respectively.
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The g−2 frequency equals

ωa = ω0(1 − C),

C =
1

4
ψ2

0















1 − ω2
0

γ2(ω2
0 − ω2

p)
− ω2

p(f − 1)(f − 1 + 2/γ)

ω2
0 − ω2

p

−(γ − 1)2ω2
0 − f2γ2ω2

p

γ2(ω2
0 − ω2

p)
< cos [2(ω0t + φ0)] > ·1 + s2

⊥
1 − s2

⊥















.

(9)

Formula (9) is in the best agreement with the result found by F.
Farley
[F.J.M. Farley, Phys. Lett. B 42, 66 (1972).]

However, it contains the additional oscillatory term which is zero
on the average. It is possible to include the oscillatory term in a
fitting process instead of its elimination. In the real g−2 experiment,

f = 1, s
(0)
3 = 0, γ ≫ 1, φ0 equals 0 or π, and formula (9) takes
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the form

ωa = ω0(1 − C), C =
1

4
ψ2

0 [1− < cos (2ω0t) >] .

This formula shows the inclusion of the oscillatory term in a fitting
process is not difficult. The vertical BOs violate the sinusoidality of
the spin motion.

6 QUANTUM DESCRIPTION OF SPIN DYNAMICS

NEAR RESONANCES

Perhaps, the best description of quantum spin dynamics was given
in ”The Feynman Lectures on Physics”. We follow this approach.

The spin state of particle is defined by the two-component wave
function

Ψ =













C1(t)
C2(t)













,
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where C1(t) and C2(t) are time-dependent amplitudes. The wave

functions |u >=













1
0













and |d >=













0
1













characterize the spin-up and

spin-down states those energies are E
(0)
1 and E

(0)
2 . We take into

account a possible decay of the particle:

E
(0)
1 = E0 +

ω0

2
− i

Γ

2
,

E
(0)
2 = E0 −

ω0

2
− i

Γ

2
,

where Γ = 1/τ is a decay constant, τ is the lifetime, and ω0 is the
difference between the energies of the nonperturbed states. We use
the system of units h̄ = c = 1.

The dynamics of the wave function Ψ is defined by

i
dΨ

dt
= HΨ, H =













H11 H12
H21 H22













,

Hij =< i|H|j >, i, j = 1, 2.
(10)
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Certainly, H21 = H∗
12.

Usual representation of the spin matrices leads to cumbersome cal-
culations. We do an important change of definition of the Pauli
matrices. The calculations are strongly simplified with the direct
substitution of the Pauli matrices for σρ and σφ :

σρ =













0 1
1 0













, σφ =













0 −i
i 0













. (11)

It can be grounded. Of course, such a substitution changes the form
of the Hamiltonian, which should be consistent with the equation of
spin motion in the cylindrical coordinates.

The Hamiltonian takes the form
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H =
1

2
σ · ωa (12)

or

H = − e

2m



















aσ · B − aγ

γ + 1
(σ · β)(β · B)

+











1

γ2 − 1
− a











σ · (β × E) +
1

γ











σ · B‖ −
1

β2σ · (β × E)‖











+
η

2











σ · E − γ

γ + 1
(σ · β)(β · E) + σ · (β×B)





























+
1

2
oσ · ez.(13)

The stated method can be verified by means of considering prob-
lems formerly solved by other methods. When the perturbation is
caused by the longitudinal magnetic field Bφ, the calculated formula
agree with the formerly obtained result
[A.J. Silenko, JETP, 87, 629 (1998).]
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7 SPIN DYNAMICS NEAR RESONANCES

We consider the spin dynamics near resonances when the beam
energy is constant and ω ≈ ω0. As a result of averaging, terms
oscillating with the angular frequency ω + ω0 can be neglected.

The general solution of initial equation for the amplitudes of spin
wave functions is given by

C1(t) =

























cos
ω′t
2

− i
ω0−ω

ω′ sin
ω′t
2













C1(0) − i
2E
ω′ sin

ω′t
2
C2(0)













e−
Γ
2 t,

C2(t) =













−i
2E∗
ω′ sin

ω′t
2
C1(0) +













cos
ω′t
2

+ i
ω0−ω

ω′ sin
ω′t
2













C2(0)













e−
Γ
2 t.

(14)
In this case
[J.H. Field and G. Fiorentini, Nuovo Cim. A21, 297 (1974)]

ω′ =
√

√

√

√(ω0 − ω)2 + 4E2
0 .
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To calculate the angular frequency of spin rotation, ωa, we have to
take into account

i) ωa → ω0 when E → 0;
ii) the spin state defined by Eq. (14) becomes equivalent to the

initial spin state C1(0), C2(0) when t = 2πN/ω′ (N is integer).
The angular frequency of spin rotation is equal to

ωa = ω + (ω0 − ω)

√

√

√

√

√

√

√

√

√

1 +
4E2

0

(ω0 − ω)2
, ω0 6= ω.

When ω0 = ω, ωa = ω0. When the resonance is not perfect
(|ω0 − ω| >> E0),

ωa = ω0 +
2E2

0

ω0 − ω
.

The periodical motion of spin near the resonance is very nonsinu-
soidal.

The problem was formerly solved by Field and Fiorentini
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[J.H. Field and G. Fiorentini, Nuovo Cim. A21, 297 (1974)]
However, we cannot confirm the corresponding result obtained in

this work. The discrepancy is caused by the disagreement of the
approach used by Field and Fiorentini with condition ”i)”.

Let us consider two important cases.

INITIAL DIRECTION OF SPIN IS VERTICAL

C1(0) = 1, C2(0) = 0,

C1(t) =













cos
ω′t
2

− i
ω0−ω

ω′ sin
ω′t
2













e−
Γ
2 t,

C2(t) = −i
2E∗
ω′ sin

ω′t
2

e−
Γ
2 t.

If the particle has not decayed, the probability to find it in the
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spin-flipped state is given by the known formula:

P (t) =
|C2(t)|2

|C1(t)|2 + |C2(t)|2
=

4E2
0

(ω0−ω)2 + 4E2
0

sin2 ω′t
2

.
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INITIAL DIRECTION OF SPIN IS HORIZONTAL

Let us consider the general case when the azimuth ψ defining an
initial orientation of spin is arbitrary. In this case

C1(0) =
1√
2
e−iψ/2, C2(0) =

1√
2
eiψ/2,

C1(t) =
1√
2
e−iψ/2













cos
ω′t
2

+
2E0 sin (ψ − ϕ)

ω′ sin
ω′t
2

−i
ω0 − ω + 2E0 cos (ψ − ϕ)

ω′ sin
ω′t
2













e−
Γ
2 t,

C2(t) =
1√
2
eiψ/2













cos
ω′t
2

− 2E0 sin (ψ − ϕ)

ω′ sin
ω′t
2

+i
ω0 − ω − 2E0 cos (ψ − ϕ)

ω′ sin
ω′t
2













e−
Γ
2 t

(15)
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and

|C1(t)|2 =
1

2











1 +
2E0 sin (ψ − ϕ)

ω′ sin (ω′t)

+
4E0(ω0 − ω) cos (ψ − ϕ)

ω′2 sin2 ω′t
2













e−Γt,

|C2(t)|2 =
1

2











1 − 2E0 sin (ψ − ϕ)

ω′ sin (ω′t)

−4E0(ω0 − ω) cos (ψ − ϕ)

ω′2 sin2 ω′t
2













e−Γt.

(16)

The value ψ = 0 corresponds to the radial direction.
Therefore, |C1(t)|2 6= |C2(t)|2 6= 1/2 and the spin vector does not

lie in the horizontal plane. The spin oscillates in the vertical direction
with the angular frequency ω′.
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8 EFFECT OF RESONANCES ON SPIN MOTION IN

STORAGE RINGS

The effect of resonances on spin motion in storage rings has some
peculiarities. The spin-dependent part of the Hamiltonian affected
by the vertical BOs can be written in the form

H = σρλκ1 cos (ωt + ϕ) − σφκ2 sin (ωt + ϕ),

where λ equals 1 and −1 for particles with negative and positive
charges moving counterclockwise and clockwise, respectively,

κ1 =
1

2
fωψ0, κ2 = ω0

γ − 1

2γ
ψ0,

and ψ0 is the angular amplitude of the vertical BOs. The factor f is

f = 1 + aγ − 1 + a

γ
= 1 + aβ2γ − 1

γ
and

f = 1 + aγ
26



for electric and magnetic focusing, respectively.
For any sign of charge,

ωa = ω + (ω0 − ω)

√

√

√

√

√

√

√

√

√

1 +
(κ2 − κ1)2

(ω0 − ω)2
, ω0 6= ω. (17)

It is very important that the effect of resonances is rather weak for
electron, positrons, and muons (a << 1). It is stronger for protons
(a ∼ 1). When a << 1,

κ2 − κ1 =
1

2















(ω0 − ω)
γ − 1

γ
− γ2 − 1

γ
aω















ψ0

and

κ2 − κ1 =
1

2















(ω0 − ω)
γ − 1

γ
− aγ2 + 1

γ
ω















ψ0

for electric and magnetic focusing, respectively.

In the g−2 experiment,
1

γ2 − 1
= a, γ = 29.3 and electric focusing
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is used. In this case

κ2 − κ1 =
1

2











ω0 − ω − ω0

γ











ψ0,

and the half-width of resonance curve is narrowed 29.3 times. The
angular frequency of g−2 precession is given by

ωa = ω + (ω0 − ω)

√

√

√

√

√

√

√

√

√

1 +
1

4











1 − ω0

γ(ω0 − ω)











2
ψ2

0, ω0 6= ω.

These formulae agree with the formula obtained by F. Farley for
the pitch correction.
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9 SUMMARY

• The exact equation of spin motion in the cylindrical

coordinate system is derived. This coordinate system

is convenient for describing the spin motion in storage

rings. The electric dipole moments of particles and per-

turbations of particle orbit are taken into account.

• The formula for the frequency of g−2 precession is in

the best agreement with previous results. The found

formula contains the additional oscillatory term that

can be used for fitting.

• The effect of resonances on spin motion in storage

rings is investigated. Previous results are corrected.

When |g − 2| << 1, the effect is rather weak.
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