Лекция № 5. ПС КХД и факторизация

А. П. Бакулев

ЛТФ им. Н. Н. Боголюбова, ОИЯИ (Дубна, Россия)

3-я Зимняя школа: КТП и КХД@Дубна

Содержание

- **• КХД**: кварки внутри, адроны снаружи! Как быть?
- Правила сумм КХД: как можно изучать адроны в непертурбативной КХД, 2-точечный кореллятор для аксиальных токов и пионная константа распада.
- Локальная дуальность для пионной константы распада.
- Правила сумм КХД: 3-точечный кореллятор векторного и двух аксиальных токов и формфактор пиона.
- Локальная дуальность для формфактора пиона и тождество Уорда.
- Факторизация, пионная амплитуда распределения (πАР), ее эволюция в пертурбативной КХД (пКХД)

Кварки внутри, Адроны снаружи! Как быть?

З-я Зимняя школа: КТП и КХД@Дубна

КХД: лагранжиан, кварки и глюоны

Калибровочно-инвариантный лагранжиан КХД

$$\mathcal{L}_{QCD} = -\frac{1}{4} G^a_{\mu\nu} G^{a\mu\nu} + \sum_{q=u,d,s,...} \bar{\psi}_q (i\hat{D} - m_q)\psi_q$$
(1)

содержит только поля глюонов $(G^a_{\mu\nu}(x))$ и кварков $(\psi_q(x))$. Эти поля имеют цветовые степени свободы: З у кварков $\psi^A_q(x)$ (A = 1, 2, 3) и 8 у глюонов $G^a_{\mu\nu}(x)$ (a = 1, ..., 8). Взаимодействие спрятано в ковариантной производной D^{AB}_{μ}

КХД: лагранжиан, кварки и глюоны

Калибровочно-инвариантный лагранжиан КХД

$$\mathcal{L}_{QCD} = -\frac{1}{4} G^a_{\mu\nu} G^{a\mu\nu} + \sum_{q=u,d,s,...} \bar{\psi}_q (i\hat{D} - m_q)\psi_q$$
(1)

содержит только поля глюонов ($G^a_{\mu\nu}(x)$) и кварков ($\psi_q(x)$). Эти поля имеют цветовые степени свободы: 3 у кварков $\psi^A_q(x)$ (A = 1, 2, 3) и 8 у глюонов $G^a_{\mu\nu}(x)$ ($a = 1, \ldots, 8$). Взаимодействие спрятано в ковариантной производной D^{AB}_{μ}

$$D^{AB}_{\mu} = \partial_{\mu} - ig_s (t^a)^{AB} A^a_{\mu}$$
$$G^a_{\mu\nu} = \partial_{\mu}A^a_{\nu} - \partial_{\nu}A^a_{\mu} + g_s f^{abc} A^b_{\mu}A^c_{\nu}$$

Оно нелинейно за счет неабелевости ($f^{abc} \neq 0$).

КХД: цветные глюоны ⇒ конфайнмент

З-я Зимняя школа: КТП и КХД@Дубна

КХД: цветные глюоны ⇒ конфайнмент

Неабелевость КХД приводит к заряженным (цветным) глюонам. Отсюда – конфайнмент!

З-я Зимняя школа: КТП и КХД@Дубна

Безмассовая КХД: каковы адроны?

PS- и V-мезоны из <i>u</i> - и <i>d</i> -кварков				
тип мезона	PS	V		
состав	$\pi^0[\bar{u}u-\bar{d}d],\ \pi^\pm[\bar{u}d,\bar{d}u]$	$ ho^0(\omega)[\bar{u}u-\bar{d}d],\ ho^{\pm}[\bar{u}d,\bar{d}u]$		
масса	140 МэВ	770(780) МэВ		

Безмассовая КХД: каковы адроны?

PS- и V-мезоны из <i>u</i> - и <i>d</i> -кварков				
тип мезона	PS	V		
состав	$\pi^0[\bar{u}u-\bar{d}d], \ \pi^{\pm}[\bar{u}d,\bar{d}u]$	$ ho^0(\omega)[\bar{u}u-\bar{d}d],\ ho^{\pm}[\bar{u}d,\bar{d}u]$		
масса	140 МэВ	770(780) МэВ		

Барионы из <i>u</i> - и <i>d</i> -кварков				
состав	p[uud]	n[udd]	$\Delta^{++}[uuu], \Delta^{+}[uud],$	
			$\Delta^0[udd], \ \Delta^-[ddd]$	
масса	938 МэВ	939 МэВ	1232 МэВ	

З-я Зимняя школа: КТП и КХД@Дубна

Свойства адронов

непертурбативной КХД

З-я Зимняя школа: КТП и КХД@Дубна

Проблема: как описывать связанные состояния в КХД?

Проблема: как описывать связанные состояния в КХД? Метод правил сумм КХД позволяет рассчитывать характеристики адронных состояний (массы, распадные константы, магнитные моменты), но ничего не говорит о самом процессе связывания кварков в адрон (адронизация, конфайнмент).

Проблема: как описывать связанные состояния в КХД? Метод правил сумм КХД позволяет рассчитывать характеристики адронных состояний (массы, распадные константы, магнитные моменты), но ничего не говорит о самом процессе связывания кварков в адрон (адронизация, конфайнмент). Предложен в 1977 г. Шифманом, Вайнштейном и Захаровым (ИТЭФ) для описания спектра состояний J/ψ -частицы, содержащей c-кварк и открытой в 1974 г. на e^+e^- -коллайдере SPEAR (SLAC) (параллельно была открыта и в *p* + *Be*-взаимодействиях в BNL). В 1979 г. применен для описания легких адронов в безмассовой KXД.

Проблема: как описывать связанные состояния в КХД? Метод правил сумм КХД позволяет рассчитывать характеристики адронных состояний (массы, распадные константы, магнитные моменты), но ничего не говорит о самом процессе связывания кварков в адрон (адронизация, конфайнмент). Предложен в 1977 г. Шифманом, Вайнштейном и Захаровым (ИТЭФ) для описания спектра состояний J/ψ -частицы, содержащей c-кварк и открытой в 1974 г. на e^+e^- -коллайдере SPEAR (SLAC) (параллельно была открыта и в *p* + *Be*-взаимодействиях в BNL). В 1979 г. применен для описания легких адронов в безмассовой KXД.

Основная идея: посчитать корреляторы адронных токов $\langle 0|T[J_1(x)J_2(0)]|0 \rangle$ двумя способами. Правило сумм – результат согласования.

КХД ПС: общая схема

Коррелятор адронных токов берется в дисперсионном представлении

$$F_{x \to q} \left[\langle 0 | T \left[J_1(x) J_2(0) \right] | 0 \rangle \right] \left(Q^2 \right) \equiv \Pi \left(Q^2 \right) = \frac{1}{\pi} \int_0^\infty \frac{\rho_{12}(s) \, ds}{s + Q^2}$$

после чего к нему применяют преобразование Бореля:

$$B_{Q^2 \to M^2} \left[\Pi(Q^2) \right] \equiv \Phi\left(M^2\right) = \frac{1}{\pi} \int_0^\infty \rho_{12}\left(s\right) e^{-s/M^2} \frac{ds}{M^2} \,,$$

которое "давит" вклады высших состояний и способствует улучшению качества правил сумм. Кроме того, оно уничтожает все вычитания в дисперсионном представлении.

З-я Зимняя школа: КТП и КХД@Дубна

КХД ПС: общая схема

1-ый способ: операторное разложение с учетом наличия конденсатов кварковых и глюонных полей в КХД-вакууме

$$\Phi\left(Q^{2}\right) = \Phi_{\text{pert}}\left(Q^{2}\right) + c_{GG}\left\langle\frac{\alpha_{s}}{\pi}G^{a}_{\mu\nu}G^{a\mu\nu}\right\rangle + c_{\bar{q}q}\left\langle\alpha_{s}\left\langle\bar{q}q\right\rangle^{2}\right)$$

Здесь $\langle \frac{\alpha_s}{\pi} G^a_{\mu\nu} G^{a\mu\nu} \rangle = 0.012 \ \Gamma \mathfrak{g} B^4$, $\alpha_s \langle \bar{q}q \rangle^2 = 0.0018 \ \Gamma \mathfrak{g} B^6$.

2-ой способ: феноменологическое насыщение спектральной плотности адронными состояниями

$$\rho_{\text{had}}\left(s\right) = f_{h}^{2}\delta\left(s - m_{h}^{2}\right) + \rho_{\text{pert}}\left(s\right)\theta\left(s - s_{0}\right)$$

в виде модели основное состояние h+continuum, который начинается с порога $s = s_0$.

КХД ПС: общая схема

Вопрос: Почему вклад континуума моделируют с помощью пертурбативной спектральной плотности? Ответ: у нас имеется строгое соотношение между кварковой и адронной спектральными плотностями при $M^2 \to \infty$ (когда все степенные поправки обращаются в 0)

$$\int_{0}^{\infty} \rho_{\text{pert}}(s) ds = \int_{0}^{\infty} \rho_{\text{had}}(s) ds \,,$$

но оно дает нам право говорить о глобальной спектральной дуальности кварков и адронов. А вот эксперименты по e^+e^- -аннигиляции в адроны и по τ -распаду позволяют говорить и о локальной дуальности.

Кварк-адронная дуальность

З-я Зимняя школа: КТП и КХД@Дубна

Кварк-адронная дуальность

3-я Зимняя школа: КТП и КХД@Дубна

КХД ПС: аксиальный коррелятор

Рассмотрим коррелятор $F_{x \to q} \langle T \left[j^{\dagger}_{\mu 5}(x) j_{\nu 5}(0) \right] \rangle$ аксиальных токов

 $J_{\mu 5}^{\dagger}(x) = \bar{d}(x)\gamma_{\mu}\gamma_{5}u(x) \quad \text{M} \quad J_{\nu 5}(0) = \bar{u}(0)\gamma_{\nu}\gamma_{5}d(0) \,.$

Пионная константа распада определяется матричным элементом $\langle 0 \mid \bar{d}(0) \gamma_{\mu} \gamma_{5} u(0) \mid \pi(P) \rangle = i f_{\pi} P_{\mu}.$

КХД ПС: аксиальный коррелятор

Рассмотрим коррелятор $F_{x \to q} \langle T \left[j^{\dagger}_{\mu 5}(x) j_{\nu 5}(0) \right] \rangle$ аксиальных токов

 $J_{\mu 5}^{\dagger}(x) = \bar{d}(x)\gamma_{\mu}\gamma_{5}u(x) \quad \text{M} \quad J_{\nu 5}(0) = \bar{u}(0)\gamma_{\nu}\gamma_{5}d(0) \,.$

Пионная константа распада определяется матричным элементом $\langle 0 \mid \bar{d}(0) \gamma_{\mu} \gamma_{5} u(0) \mid \pi(P) \rangle = i f_{\pi} P_{\mu}$. Этот коррелятор разлагается в сумму

$$\Pi_{5\mu5\nu}(q) = g_{\mu\nu}\Pi_1(Q^2) + q_\mu q_\nu \Pi_2(Q^2) \,.$$

Нас будет интересовать коррелятор $\Pi_2(Q^2)$, который очень похож по расчету на коррелятор $\Pi_V(Q^2)$ в векторном канале.

Рассмотрим коррелятор $\Pi_2(Q^2)$, который очень похож по расчету на коррелятор $\Pi_V(Q^2)$ в векторном канале. Все отличие – в наличии 2 γ_5 -матриц в вершинах.

Рассмотрим коррелятор $\Pi_2(Q^2)$, который очень похож по расчету на коррелятор $\Pi_V(Q^2)$ в векторном канале. Все отличие – в наличии 2 γ_5 -матриц в вершинах.

З-я Зимняя школа: КТП и КХД@Дубна

Рассмотрим коррелятор $\Pi_2(Q^2)$, который очень похож по расчету на коррелятор $\Pi_V(Q^2)$ в векторном канале. Все отличие – в наличии 2 γ_5 -матриц в вершинах.

Рассмотрим коррелятор $\Pi_2(Q^2)$, который очень похож по расчету на коррелятор $\Pi_V(Q^2)$ в векторном канале. Все отличие – в наличии 2 γ_5 -матриц в вершинах.

Рассмотрим коррелятор $\Pi_2(Q^2)$, который очень похож по расчету на коррелятор $\Pi_V(Q^2)$ в векторном канале. Все отличие – в наличии 2 γ_5 -матриц в вершинах.

З-я Зимняя школа: КТП и КХД@Дубна

Рассмотрим коррелятор $\Pi_2(Q^2)$, который очень похож по расчету на коррелятор $\Pi_V(Q^2)$ в векторном канале. Все отличие – в наличии 2 γ_5 -матриц в вершинах.

З-я Зимняя школа: КТП и КХД@Дубна

Рассмотрим коррелятор $\Pi_2(Q^2)$, который очень похож по расчету на коррелятор $\Pi_V(Q^2)$ в векторном канале. Все отличие – в наличии 2 γ_5 -матриц в вершинах.

З-я Зимняя школа: КТП и КХД@Дубна

KXД ПС: графики для f_{π}

В результате получается следующее правило сумм

$$f_{\pi}^{2} = \frac{M^{2}}{4\pi^{2}} \left(1 - e^{-s_{0}/M^{2}}\right) \left[1 + \frac{\alpha_{s}}{\pi}\right] + \frac{\langle \frac{\alpha_{s}}{\pi}GG \rangle}{12M^{2}} + \frac{176}{81} \frac{\pi \alpha_{s} \langle \bar{q}q \rangle^{2}}{M^{4}}$$

З-я Зимняя школа: КТП и КХД@Дубна

KXД ПС: графики для f_{π}

В модели с A_1 -мезоном получается чуть большее значение $f_{\pi} = 0.137 \pm 0.13 \ \Gamma$ эВ, которое следует сравнить с $f_{\pi}^{\exp} = 0.132 \ \Gamma$ эВ.

З-я Зимняя школа: КТП и КХД@Дубна

Локальная дуальность для f_{π}

В подходе локальной дуальности получим следующее соотношение

$$4\pi^2 f_{\pi;\text{LD}}^2 = s_0^{\text{LD}} \left[1 + \frac{\alpha_s}{\pi} \right]$$

Оно дает значение $f_{\pi;LD} = 0.136 \ \Gamma \Rightarrow B$ для определенного нами порога $s_0 = 0.63 \ \Gamma \Rightarrow B^2$.

Локальная дуальность для f_{π}

В подходе локальной дуальности получим следующее соотношение

$$4\pi^2 f_{\pi;\text{LD}}^2 = s_0^{\text{LD}} \left[1 + \frac{\alpha_s}{\pi} \right]$$

Оно дает значение $f_{\pi;LD} = 0.136 \ \Gamma \Rightarrow B$ для определенного нами порога $s_0 = 0.63 \ \Gamma \Rightarrow B^2$. Экспериментальное значение $f_{\pi}^{\exp} = 0.132 \ \Gamma \Rightarrow B$ дает нам наилучшее значение порога в подходе ЛД без учета α_s -поправки

$$s_0^{\mathrm{LD}} \simeq 0.70 \ \mathrm{\Gamma}$$
э B^2

Локальная дуальность для f_{π}

В подходе локальной дуальности получим следующее соотношение

$$4\pi^2 f_{\pi;\text{LD}}^2 = s_0^{\text{LD}} \left[1 + \frac{\alpha_s}{\pi} \right]$$

Оно дает значение $f_{\pi;LD} = 0.136 \ \Gamma \Rightarrow B$ для определенного нами порога $s_0 = 0.63 \ \Gamma \Rightarrow B^2$. Экспериментальное значение $f_{\pi}^{\exp} = 0.132 \ \Gamma \Rightarrow B$ дает нам наилучшее значение порога в подходе ЛД без учета α_s -поправки

$$s_0^{\mathrm{LD}} \simeq 0.70 \ \mathrm{\Gamma}$$
э B^2

и в 1-петлевом приближении:

$$s_0^{\mathrm{LD;1\text{-}loop}} = 0.59 \ \mathrm{Gamma}^2$$

З-я Зимняя школа: КТП и КХД@Дубна

КХДПС для ФФ пиона

З-я Зимняя школа: КТП и КХД@Дубна

AAV-коррелятор: пионный вклад

Рассмотрим коррелятор двух аксиальных токов $j_{5\mu}, j_{5\nu}$ и электромагнитного тока $J^{\alpha} = e_u \bar{u} \gamma^{\mu} u + e_d \bar{d} \gamma^{\mu} d$

 $T^{\alpha}_{\mu\nu}(p_1, p_2) = \iint e^{-ip_1x + ip_2y} \langle 0|T\{j_{5\mu}(y)J^{\alpha}(0)j^+_{5\nu}(x)\}\rangle d^4x d^4y.$

 $\underbrace{p_1}_{5\mu}$

Пионный вклад равен

 $\langle 0|j_{\mu}(y)|p_{2}\rangle\langle p_{2}|J^{\alpha}(0)|p_{1}\rangle\langle p_{1}|j_{\nu}^{+}(x)|0\rangle$.

Здесь-то и возникает формфактор: $\langle p_2 | J^{\alpha}(0) | p_1 \rangle = (p_1 + p_2)^{\alpha} F(Q^2)$ (вспомните лекцию О. Теряева), а значит пионный вклад есть

 $2f_{\pi}^{2}F(Q^{2})P_{\mu}P^{\alpha}P_{\nu} + O(q^{\alpha}, q_{\mu}, q_{\nu}).$

AAV-коррелятор: пионный вклад

Нас будет интересовать лоренцева структура $P_{\mu}P^{\alpha}P_{\nu}$, где $P = (p_1 + p_2)/2$. Для ее выделения будем умножать наш коррелятор на $n^{\mu}n_{\alpha}n^{\nu}/2(np)^3$, где 4-вектор n обладает свойствами: $n^2 = 0$, $np_1 = np_2 = nP$ и nq = 0:

$$T(p_1^2, p_2^2, q^2) = \frac{n^{\mu} n_{\alpha} n^{\nu}}{2(nP)^3} T^{\mu}_{\alpha\beta}(p_1, p_2) \,.$$

Определим сразу борелевскую амплитуду $\Phi(M_1^2, M_2^2, Q^2)$ как двойное преобразование Бореля $-p_1^2 \to M_1^2, -p_2^2 \to M_2^2$ для амплитуды $T(-p_1^2, -p_2^2, q^2 = -Q^2)$. Для нее двойное дисперсионное представление запишется в виде

$$\Phi(M_1^2, M_2^2, Q^2) = \int_0^\infty \frac{ds_1}{M_1^2} \int_0^\infty \frac{ds_2}{M_2^2} \rho(s_1, s_2, Q^2) e^{-s_1/M_1^2 - s_2/M_2^2}$$

З-я Зимняя школа: КТП и КХД@Дубна
ААV-коррелятор: пертурбативный вклад

Рассмотрим пертурбативный вклад.

$$\Phi^{\text{pert}}(M_1^2, M_2^2, Q^2) = \frac{3}{2\pi^2(M_1^2 + M_2^2)}$$

$$\int_0^1 x\bar{x} \exp\left\{\frac{-xQ^2}{\bar{x}(M_1^2 + M_2^2)}\right\} dx$$

А вот и интересная задача: найти спектральную плотность $\rho^{\text{pert}}(s_1, s_2, Q^2).$

AAV-коррелятор: пертурбативный вклад

Рассмотрим пертурбативный вклад.

$$\Phi^{\text{pert}}(M_1^2, M_2^2, Q^2) = \frac{3}{2\pi^2(M_1^2 + M_2^2)}$$

$$\int_0^1 x\bar{x} \exp\left\{\frac{-xQ^2}{\bar{x}(M_1^2 + M_2^2)}\right\} dx$$

А вот и интересная задача: найти спектральную плотность $\rho^{\text{pert}}(s_1, s_2, Q^2)$. Я выпишу ответ:

$$\rho^{\text{pert}}(s_1, s_2, t) = \frac{3}{4\pi^2} \left[\frac{d^2}{dt^2} + \frac{d^3}{3dt^3} \right] \frac{1}{\sqrt{(s_1 + s_2 + t)^2 - 4s_1 s_2}}$$

З-я Зимняя школа: КТП и КХД@Дубна

AAV-коррелятор: пертурбативный вклад

$$\rho^{\text{pert}}(s_1, s_2, t) = \frac{3}{4\pi^2} \left[\frac{d^2}{dt^2} + \frac{d^3}{3dt^3} \right] \frac{1}{\sqrt{(s_1 + s_2 + t)^2 - 4s_1 s_2}}$$

Свойства спектральной плотности $\rho^{\text{pert}}(s_1, s_2, Q^2)$:

•
$$\rho^{\text{pert}}(s_1, s_2, Q^2 \gg s_i) = \frac{3}{2\pi^2} \left[\frac{s_1 + s_2}{Q^4} - 4 \frac{s_1^2 + s_2^2 + 4s_1 s_2}{Q^6} + \dots \right]$$

З-я Зимняя школа: КТП и КХД@Дубна

AAV-коррелятор: пертурбативный вклад

$$\rho^{\text{pert}}(s_1, s_2, t) = \frac{3}{4\pi^2} \left[\frac{d^2}{dt^2} + \frac{d^3}{3dt^3} \right] \frac{1}{\sqrt{(s_1 + s_2 + t)^2 - 4s_1 s_2}}$$

Свойства спектральной плотности $\rho^{\text{pert}}(s_1, s_2, Q^2)$:

•
$$\rho^{\text{pert}}(s_1, s_2, Q^2 \gg s_i) = \frac{3}{2\pi^2} \left[\frac{s_1 + s_2}{Q^4} - 4 \frac{s_1^2 + s_2^2 + 4s_1 s_2}{Q^6} + \dots \right]$$

•
$$\rho^{\text{pert}}(s_1, s_2, Q^2 \to 0) =$$

 $\frac{1}{4\pi^2}\delta(s_1 - s_2) + \frac{Q^2}{4\pi^2}(s_1 + s_2)\delta''(s_1 - s_2) + \dots$

Сейчас мы займемся получением $\rho^{\text{pert}}(s_1, s_2, Q^2 = 0)$ из тождеств Уорда для AAV-коррелятора.

Пусть

$$T^{\alpha}_{\mu\nu}(x,z,y) = \langle 0|T\{j_{5\mu}(y)J^{\alpha}(z)j^{+}_{5\nu}(x)\}\rangle.$$

Дифференцируем $T^{lpha}_{\mu,
u}(x,z,y)$ по z^{lpha}

$$\partial_{z_{\alpha}} T^{\alpha}_{\mu,\nu}(x,z,y) = e_{\pi} \langle 0|T\left[j^{+}_{5\mu}(x)j_{5\nu}(y)\right]|0\rangle \left[\delta(z-x) - \delta(z-y)\right]$$

где $e_{\pi} \equiv e_u - e_d = 1$. Это — тождества Уорда (ТУ) в *x*-представлении.

Пусть

$$T^{\alpha}_{\mu\nu}(x,z,y) = \langle 0|T\{j_{5\mu}(y)J^{\alpha}(z)j^{+}_{5\nu}(x)\}\rangle.$$

Дифференцируем $T^{lpha}_{\mu,
u}(x,z,y)$ по z^{lpha}

$$\partial_{z_{\alpha}} T^{\alpha}_{\mu,\nu}(x,z,y) = e_{\pi} \langle 0|T\left[j^{+}_{5\mu}(x)j_{5\nu}(y)\right]|0\rangle \left[\delta(z-x) - \delta(z-y)\right]$$

где $e_{\pi} \equiv e_u - e_d = 1$. Это — тождества Уорда (ТУ) в *x*-представлении. В *p*-представлении

$$q_{\alpha}T^{\alpha}_{\mu,\nu}(p_{1},p_{2},q) = \left[\Pi_{5\mu,5\nu}(p_{2}) - \Pi_{5\mu,5\nu}(p_{1})\right],$$

где $\Pi_{5\mu,5\nu}(p) \equiv i \int dx \exp(-ipx) \langle 0|T \left[j^{+}_{5\mu}(x)j_{5\nu}(0)\right] |0\rangle.$

З-я Зимняя школа: КТП и КХД@Дубна

Вводя лоренцевы структуры для корреляторов

$$\Pi_{5\mu,5\nu}(p) = g_{\mu\nu}\Pi_1(p^2) + p_{\mu}p_{\nu}\Pi_2(p^2)$$

 $T^{\alpha}_{\mu,\nu}(p_1, p_2, q) = 2 P_{\mu} P_{\nu} P^{\alpha} T\left(p_1^2, p_2^2, q^2\right) + P_{\mu} P_{\nu} q^{\alpha} T_0\left(p_1^2, p_2^2, q^2\right) + \dots$

получаем тождества Уорда-Такахаши

$$\left(p_2^2 - p_1^2\right) T\left(p_1^2, p_2^2, Q^2\right) + Q^2 T_0\left(p_1^2, p_2^2, Q^2\right) = \left[\Pi\left(p_2^2\right) - \Pi\left(p_1^2\right)\right]$$

Вводя лоренцевы структуры для корреляторов

$$\Pi_{5\mu,5\nu}(p) = g_{\mu\nu}\Pi_1(p^2) + p_{\mu}p_{\nu}\Pi_2(p^2)$$

 $T^{\alpha}_{\mu,\nu}(p_1, p_2, q) = 2 P_{\mu} P_{\nu} P^{\alpha} T\left(p_1^2, p_2^2, q^2\right) + P_{\mu} P_{\nu} q^{\alpha} T_0\left(p_1^2, p_2^2, q^2\right) + \dots$

получаем тождества Уорда-Такахаши

$$\left(p_2^2 - p_1^2\right) T\left(p_1^2, p_2^2, Q^2\right) + Q^2 T_0\left(p_1^2, p_2^2, Q^2\right) = \left[\Pi\left(p_2^2\right) - \Pi\left(p_1^2\right)\right]$$

При $Q^2 = 0$ они сводятся к

$$(p_2^2 - p_1^2) T (p_1^2, p_2^2, 0) = [\Pi (p_2^2) - \Pi (p_1^2)]$$

что дает связь спектральных плотностей 3- и 2-точечных корреляторов.

З-я Зимняя школа: КТП и КХД@Дубна

Вводя лоренцевы структуры для корреляторов

$$\Pi_{5\mu,5\nu}(p) = g_{\mu\nu}\Pi_1(p^2) + p_{\mu}p_{\nu}\Pi_2(p^2)$$

 $T^{\alpha}_{\mu,\nu}(p_1, p_2, q) = 2 P_{\mu} P_{\nu} P^{\alpha} T\left(p_1^2, p_2^2, q^2\right) + P_{\mu} P_{\nu} q^{\alpha} T_0\left(p_1^2, p_2^2, q^2\right) + \dots$

получаем тождества Уорда-Такахаши

$$\left(p_2^2 - p_1^2\right) T\left(p_1^2, p_2^2, Q^2\right) + Q^2 T_0\left(p_1^2, p_2^2, Q^2\right) = \left[\Pi\left(p_2^2\right) - \Pi\left(p_1^2\right)\right]$$

При $Q^2 = 0$ они дают связь спектральных плотностей:

$$\rho_3(s_1, s_2, 0) = \delta(s_1 - s_2) \,\rho_2(s_1) = \frac{1}{4\pi^2} \,\delta(s_1 - s_2).$$

(back to pQCD)

З-я Зимняя школа: КТП и КХД@Дубна

ААV-коррелятор: операторное разложение

Пертурбативный вклад: $\Phi^{\mathsf{pert}}(M^2,Q^2) =$

 $\frac{1}{M^4} \int_0^{s_0} \int_0^{s_0} \rho^{\text{pert}} \left(s_1, s_2, Q^2 \right) e^{-(s_1 + s_2)/M^2} ds_1 ds_2$

ААV-коррелятор: операторное разложение

Пертурбативный вклад: $\Phi^{\text{pert}}(M^2, Q^2) =$

$$\frac{1}{M^4} \int_0^{s_0} \int_0^{s_0} \rho^{\text{pert}} \left(s_1, s_2, Q^2 \right) e^{-(s_1 + s_2)/M^2} ds_1 ds_2$$

Вклад глюонного конденсата:

$$\Phi^{GG}(M^2, Q^2) = \frac{1}{12\pi M^6} \langle \frac{\alpha_s}{\pi} GG \rangle$$

З-я Зимняя школа: КТП и КХД@Дубна

ААV-коррелятор: операторное разложение

Вклады кварковых конденсатов:

З-я Зимняя школа: КТП и КХД@Дубна

КХД правила сумм для ФФ пиона

$$f_{\pi}^{2}F_{\pi}(Q^{2}) = \int_{0}^{s_{0}} ds_{1} \int_{0}^{s_{0}} ds_{2} \exp\left(-\frac{s_{1}+s_{2}}{M^{2}}\right) \rho^{\text{pert}}(s_{1},s_{2},Q^{2}) + \frac{\alpha_{s}\langle GG \rangle}{12\pi M^{2}} + \frac{16}{81} \frac{\pi \alpha_{s} \langle \bar{q}q \rangle^{2}}{M^{4}} \left[13 + 2\frac{Q^{2}}{M^{2}}\right]$$

Это правило сумм хорошо работает в области 0.5 $\Gamma \ni B^2 \lesssim Q^2 \lesssim 2 \ \Gamma \ni B^2$. И понятно почему: операторное разложение строилось в предположении $Q^2 \sim P_1^2 \sim P_2^2 \gg \Lambda_{\rm QCD}^2$.

КХД правила сумм для ФФ пиона

$$f_{\pi}^2 F_{\pi}(Q^2) = \int_0^{s_0} ds_1 \int_0^{s_0} ds_2 \exp\left(-\frac{s_1 + s_2}{M^2}\right) \rho^{\text{pert}}(s_1, s_2, Q^2)$$

$$+\frac{\alpha_s \langle GG \rangle}{12\pi M^2} + \frac{16}{81} \frac{\pi \alpha_s \langle \bar{q}q \rangle^2}{M^4} \left[13 + 2\frac{Q^2}{M^2} \right]$$

Это правило сумм хорошо работает в области $0.5 \ \Gamma
ightarrow B^2 \lesssim Q^2 \lesssim 2 \ \Gamma
ightarrow B^2$. И понятно почему: операторное разложение строилось в предположении $Q^2 \sim P_1^2 \sim P_2^2 \gg \Lambda_{\rm QCD}^2$. В области малых Q^2 мы должны использовать тождества Уорда и строить операторное разложение в согласии с ним. В области больших Q^2 операторное разложение взрывается из-за растущих вкладов в коэффициенты.

З-я Зимняя школа: КТП и КХД@Дубна

Локальная дуальность для ФФ пиона

З-я Зимняя школа: КТП и КХД@Дубна

Локальная дуальность для $F_{\pi}(Q^2)$

В подходе локальной дуальности получим следующее соотношение

$$F_{\pi;\text{LD}}(Q^2) = \int_0^{s_{\text{LD}}} ds_1 \int_0^{s_{\text{LD}}} ds_2 \,\rho^{\text{pert}}(s_1, s_2, Q^2)$$

и $s_{\text{LD}} \simeq 0.7 \ \Gamma \mathfrak{g} B^2$.

Локальная дуальность для $F_{\pi}(Q^2)$

В подходе локальной дуальности получим следующее соотношение

$$F_{\pi;\text{LD}}(Q^2) = \int_0^{s_{\text{LD}}} ds_1 \int_0^{s_{\text{LD}}} ds_2 \,\rho^{\text{pert}}(s_1, s_2, Q^2)$$

и $s_{\rm LD}\simeq 0.7~\Gamma$ э
В 2 . Интегралы явно берутся и мы имеем простую формулу

$$F_{\pi;\text{LD}}(Q^2) = 1 - \frac{1 + 6 s_{\text{LD}}/Q^2}{\left[1 + 4 s_{\text{LD}}/Q^2\right]^{3/2}}$$

Эта формула замечательна тем, что в ней благодаря тождеству Уорда автоматически имеется $F_{\pi;LD}(0) = 1$.

Жесткий КХД-вклад в ФФ пиона

Обмен жестким глюоном хорошо описывается формулой

$$\frac{1}{f_{\pi}^2} \int_0^{s_0} ds_1 \int_0^{s_0} ds_2 \Delta \rho^{\text{pert}}(s_1, s_2, q^2) \approx \frac{\alpha_s}{\pi} \frac{1}{1 + Q^2/2s_0}$$

Получаем такую картинку: даже на $Q^2 =$ 8 ГэВ² мягкий вклад все еще большого жесткого глюонного обмена! Хотя мягкий ~ $1/Q^4$, а жесткий ~ $1/Q^2$.

З-я Зимняя школа: КТП и КХД@Дубна

Факторизация и амплитуда распределения пиона в КХД ТВ

З-я Зимняя школа: КТП и КХД@Дубна

Факторизация для $\Phi\Phi \gamma^*\gamma^* \to \pi^0$ -перехода

Виртуальные фотоны γ^* "цепляются" за электромагнитные токи, $J_{\mu} = e_d \bar{d} \gamma_{\mu} d + e_u \bar{u} \gamma_{\mu} u$, кварков в пионе $\pi^0 = \frac{\bar{u}u - \bar{d}d}{\sqrt{2}}$ (forward). В жестком процессе виртуальности фотонов $-q_1^2, -q_2^2 \gg m_{\rho}^2$.

Кинематика процесса

$P = q_1 + q_2;$	$q = (q_1 - q_2)/2;$	$Q_i^2 \equiv -q_i^2$
$P^2 = m_\pi^2 \approx 0 ;$	$Q^2 \equiv -q^2 = (Q_1^2 +$	$Q_2^2)/2 \gg m_\rho^2$

З-я Зимняя школа: КТП и КХД@Дубна

Амплитуда (T) и формфактор (F)

^

$$T(q_1, \varepsilon_1; q_2, \varepsilon_2) = \int dz^D e^{-iq_1 z} \langle 0 | \varepsilon_1^{\mu} J_{\mu}(z) \varepsilon_2^{\nu} J_{\nu}(0) | \pi(P) \rangle$$

$$\equiv -i \varepsilon_{\mu\nu\rho\sigma} \varepsilon_1^{\mu} \varepsilon_2^{\nu} P^{\rho} q^{\sigma} F_{\gamma^*\gamma^* \to \pi^0}(q_1^2, q_2^2)$$

Вычисляем в представлении взаимодействия:

$$\begin{split} T_{\mu\nu}(q_1;q_2) &= \int dz^D e^{-iq_1 z} \langle 0|J_{\mu}(z)J_{\nu}(0)\hat{\mathbf{S}}|\pi(P)\rangle \\ &= \dots \sum_f e_f^2 \bar{\psi}_f(z) \gamma_{\mu} \psi_f(z) \bar{\psi}_f(0) \gamma_{\nu} \psi_f(0) \dots \\ &= \dots \sum_f e_f^2 \bar{\psi}_f(z) \left[\gamma_{\mu} i \hat{S}(z) \gamma_{\nu}\right] \psi_f(0) \dots \end{split}$$

Тождество ($\varepsilon_{0123} = +1$): $\gamma_{\mu} \hat{z} \gamma_{\nu} = S_{\mu z \nu \alpha} \gamma^{\alpha} + i \varepsilon_{\mu z \nu \alpha} \gamma^{\alpha} \gamma_5$

З-я Зимняя школа: КТП и КХД@Дубна

Появление пионной амплитуды $\varphi_{\pi}(x)$

$$T_{\mu\nu}(q_1;q_2) \sim \int dz^D e^{-iq_1 z} \left(\frac{z^\beta}{z^4}\right) \sum_f e_f^2 \langle \underbrace{0|\bar{\psi}_f(z)\gamma_\alpha\gamma_5\psi_f(0)|\pi(P)}_{f} \rangle$$

Появился новый объект — πAP

Появление пионной амплитуды $\varphi_{\pi}(x)$

r

$$T_{\mu\nu}(q_1;q_2) \sim \int dz^D e^{-iq_1 z} \left(\frac{z^{\rho}}{z^4}\right) \sum_f e_f^2 \langle 0 | \bar{\psi}_f(z) \gamma_{\alpha} \gamma_5 \psi_f(0) | \pi(P) \rangle$$

Появился новый объект — πAP . Этот объект
содержит в себе всю непертурбативную информацию о
пионе: все, что мы не можем вычислить в теории

1 BN

возмущений, убрано в него. Параметризация (back):

$$\langle 0 \mid \bar{d}(z)\gamma_{\alpha}\gamma_{5}d(0) \mid \pi(P) \rangle = \frac{1}{\sqrt{2}} \langle 0 \mid \bar{d}(z)\gamma_{\alpha}\gamma_{5}u(0) \mid \pi(P) \rangle$$
$$= \frac{if_{\pi}P_{\alpha}}{\sqrt{2}} \int_{0}^{1} dx \ e^{ix(zP)} \left[\varphi_{\pi}^{\mathrm{Tw-2}}(x,\mu^{2}) + z^{2}g_{1}^{\mathrm{Tw-4}}(x,\mu^{2}) \right]$$

Вклады ведущего и высшего твистов разделены.

З-я Зимняя школа: КТП и КХД@Дубна

Твисты и сингулярности на световом конус

Чем важно разделение сингулярностей по z^2 ?

$$T_{\mu\nu}(q_1;q_2) \sim \varepsilon_{\mu\nu\alpha\beta} P^{\alpha} \int_0^1 dx \int dz^D e^{-i(q_1-xP)z} \\ \left[\frac{z^{\beta}}{z^4} \varphi_{\pi}^{\mathsf{Tw-2}}(x,\mu^2) + \frac{z^{\beta}}{z^2} g_1^{\mathsf{Tw-4}}(x,\mu^2) \right]$$

Тем, что мы можем сразу определить ведущий вклад и его асимптотику при больших Q^2 . Действительно ($D = 4 - 2\varepsilon$):

$$\frac{z^{\beta}}{z^{4}} \stackrel{\text{Фурье}}{\Rightarrow} \frac{(q_{1} - xP)^{\beta}}{(q_{1} - xP)^{2}}; \qquad \frac{z^{\beta}}{z^{2}} \stackrel{\text{Фурье}}{\Rightarrow} 4 \frac{(q_{1} - xP)^{\beta}}{(q_{1} - xP)^{4}}$$

Кусок с q_1^{β} даст структуру формфакора $\varepsilon_{\mu\nu\alpha\beta}P^{\alpha}q_1^{\beta}$. А что будет с куском $\sim xP$ из числителя?

З-я Зимняя школа: КТП и КХД@Дубна

Преобразование Фурье в D измерениях

Для $D = 4 - 2\varepsilon$:

$$i \int \frac{e^{-iqz} dz^D}{(-z^2 + i0)^n} = \frac{\Gamma(D/2 - n)}{\Gamma(n)} \frac{2^{D-2n} \pi^{D/2}}{(-q^2 - i0)^{D/2 - n}}$$
$$\frac{-i}{(2\pi)^D} \int \frac{e^{iqz} dq^D}{(-q^2 - i0)^n} = \frac{\Gamma(D/2 - n)}{\Gamma(n)} \frac{2^{-2n} \pi^{-D/2}}{(-z^2 + i0)^{D/2 - n}}$$

Задача для любознательных: показать, что оба преобразования согласуются друг с другом.

Факторизация для $\gamma^*\gamma^* \to \pi^0$ -формфактора

Результат для формфактора перехода $\gamma^* \gamma^* \to \pi$: $(q_1 - xP)^2 = \bar{x}Q_1^2 + xQ_2^2$

Факторизация: общая схема

Формфактор перехода $\gamma^* \gamma^* \to \pi$: разделение малых и больших расстояний

$$= C(q_1^2, q_2^2; \mu^2; x) \otimes \varphi_{\pi}(x; \mu^2) + O\left(\frac{\delta_{\text{Tw-4}}^2}{Q^4}\right)$$
3 Lech δ^2 — масштаб вклада твиста 4

Здесь $\delta^2_{\text{Tw-4}}$ – масштаб вклада твиста 4

З-я Зимняя школа: КТП и КХД@Дубна

Факторизация: общая схема

З-я Зимняя школа: КТП и КХД@Дубна

Факторизация: общая схема

З-я Зимняя школа: КТП и КХД@Дубна

Факторизация: общие свойства πAP

Итак, что же такое $\pi AP \ \varphi_{\pi}(x, \mu^2)$ ведущего твиста 2?

она описывает матричный элемент нелокального аксиального тока на световом конусе

$$D \mid \left[\bar{d}(z) \gamma_{\alpha} \gamma_{5} E(z,0) u(0) \right]_{\mu^{2}} \mid \pi(P) \rangle \Big|_{z^{2}=0} = if_{\pi} P_{\alpha} \int_{0}^{1} dx \ e^{ix(zP)} \ \varphi_{\pi}^{\operatorname{Tw-2}}(x,\mu^{2})$$

Факторизация: общие свойства πAP

Итак, что же такое $\pi AP \ \varphi_{\pi}(x, \mu^2)$ ведущего твиста 2?

она описывает матричный элемент нелокального аксиального тока на световом конусе

$$0 \mid \left[\bar{d}(z)\gamma_{\alpha}\gamma_{5}E(z,0)u(0) \right]_{\mu^{2}} \mid \pi(P) \rangle \Big|_{z^{2}=0} = if_{\pi}P_{\alpha} \int_{0}^{1} dx \ e^{ix(zP)} \ \varphi_{\pi}^{\operatorname{Tw-2}}(x,\mu^{2})$$

она калибровочно-инвариантна за счет струны
 Фока-Швингера:

$$E(z,0) = \mathcal{P}e^{ig\int_0^z A_\mu(\tau)d\tau^\mu}$$

Факторизация: общие свойства πAP

Итак, что же такое $\pi AP \ \varphi_{\pi}(x, \mu^2)$ ведущего твиста 2?

она описывает матричный элемент нелокального аксиального тока на световом конусе

$$0 \mid \left[\bar{d}(z) \gamma_{\alpha} \gamma_{5} E(z,0) u(0) \right]_{\mu^{2}} \mid \pi(P) \rangle \Big|_{z^{2}=0} = if_{\pi} P_{\alpha} \int_{0}^{1} dx \ e^{ix(zP)} \ \varphi_{\pi}^{\operatorname{Tw-2}}(x,\mu^{2})$$

• она калибровочно-инвариантна за счет струны Фока-Швингера:

$$E(z,0) = \mathcal{P}e^{ig\int_0^z A_\mu(\tau)d\tau^\mu}$$

В твисте 4 имеется 6 различных πAP , четыре имееют значение для анализа $F_{\gamma^*\gamma^* \to \pi^0}(Q_1^2, Q_2^2)$.

Факторизация: физический смысл πAP

Факторизация: физический смысл πAP

- мультипликативно перенормируема
 [Ефремов-Радюшкин; Бродский-Лепаж, (ЕРБЛ)]
- асимптотическая πAP в 1-петлевом приближении: $\varphi_{\pi}(x; \mu^2 \to \infty) = \varphi^{As}(x) = 6x(1-x)$

Факторизация: эволюция πAP в пКХД

 $\varphi_{\pi}(x; \mu^2)$ зависит от масштаба μ^2 . Эта зависимость полностью определяется в пКХД уравнением ЕРБЛ:

$$\frac{d \varphi_{\pi}(x; \mu^2)}{d \ln \mu^2} = V(x, u; \alpha_s(\mu^2)) \bigotimes_u \varphi_{\pi}(u; \mu^2)$$
$$V(x, u; \alpha_s) = \left(\frac{\alpha_s}{4\pi}\right) V_0(x, u) + \left(\frac{\alpha_s}{4\pi}\right)^2 V_1(x, u) + .$$

З-я Зимняя школа: КТП и КХД@Дубна

Факторизация: эволюция πAP в пКХД

 $\varphi_{\pi}(x; \mu^2)$ зависит от масштаба μ^2 . Эта зависимость полностью определяется в пКХД уравнением ЕРБЛ:

$$\frac{d\varphi_{\pi}(x;\mu^2)}{d\ln\mu^2} = V(x,u;\alpha_s(\mu^2)) \bigotimes_{u} \varphi_{\pi}(u;\mu^2)$$
$$V(x,u;\alpha_s) = \left(\frac{\alpha_s}{4\pi}\right) V_0(x,u) + \left(\frac{\alpha_s}{4\pi}\right)^2 V_1(x,u) + .$$

Факторизация: эволюция πAP в пКХД

При этом вся μ^2 -зависимость переходит в коэффициенты:

$$\varphi_{\pi}(x;\mu^2) \Leftrightarrow \left\{a_2(\mu^2),a_4(\mu^2),\ldots\right\},$$

причем в 1-петлевом приближении

$$a_n^{1-\text{loop}}(\mu^2) = a_n(\mu_0^2) \left[\frac{\alpha_s(\mu^2)}{\alpha_s(\mu_0^2)}\right]^{\gamma_0(n)/(2b_0)}$$

где $\gamma_0(n)$ – аномальные размерности, определяемые собственными значениями 1-петлевого ядра эволюции V_0 , а b_0 – первый коэффициент разложения бета-функции КХД:

$$\beta\left(\alpha_s(Q^2)\right) \equiv \frac{d\alpha_s\left(\mu^2\right)}{d\ln(\mu^2)} = -\frac{\alpha_s^2\left(\mu^2\right)}{4\pi} \left[b_0 + b_1\frac{\alpha_s\left(\mu^2\right)}{4\pi} + \dots\right]$$

З-я Зимняя школа: КТП и КХД@Дубна

Лекция № 5. ПС КХД и факторизация – с. 36

Лекция закончена!