

Lattice QCD (INTRODUCTION)

DUBNA WINTER SCHOOL 1-2 FEBRUARY 2005

Confining String (Bali, Schlichter, Schilling)

Confining String

Electric field of confining String

: CLARAT!

Electric field density, R=1.98 fm

$$L = \frac{1}{4g^2} F_{\mu\nu}^2 + \frac{1}{2} |(\partial_{\mu} - iB_{\mu})\Phi|^2 + \lambda(|\Phi|^2 - \eta^2)^2$$

Confinment in Abelian theories

Compact electrodynamics
 Confinement is due to monopoles, which are condensed, and vacuum is a dual superconductor
 Z(2) gauge theory
 Confinement is due to Z(2) vortices.

Monopole confinement Compact Electrodynamics

Vortex Confinement Z(2) gauge theory

Confinement in compact electrodynamics

Partition function:

 $Z = \int_{0}^{\pi} D\theta_{l} e^{\beta \sum_{P} \cos \theta_{P}}$

 $Z = \int_{0}^{\pi} D\theta_{l} e^{\beta \sum_{P} \cos \theta_{P}}$

 θ_{z}

 $\theta_P = \theta_1 + \theta_2 - \theta_3 - \theta_3$

Confinement in compact electrodynamics

Various representations of partition function

$$Z = \int_{-\pi}^{\pi} D\theta_l \, e^{\beta \sum_{p} \cos \theta_p} = const. \sum_{\delta j=0} \exp\{-4\pi^2 \beta(j, \Delta^{-1} j)\} = const. \lim_{\substack{\lambda \to \infty \\ \kappa \to \infty}} \int DB_{\mu} D\varphi \exp\{-S_{dual}^{AHM} [B_{\mu}, \varphi]\}$$

Dual superconductor Action

$$S_{dual}^{AHM} = \int d^4 x \left[\frac{1}{g^2} G_{\mu\nu}^2 + \kappa \left| (B_{\mu} + ig\partial_{\mu}) \Phi \right|^2 + \lambda (|\Phi|^2 - 1)^2 \right]$$
$$G_{\mu\nu} = \partial_{\mu} B_{\nu} - \partial_{\nu} B_{\mu}$$

Vacuum of compact QED is dual to supercoductor

Monopole-antimonopole in superconductor

Charge-anticharge in cQED vacuum

Condensate of the Cooper pairs

Condensate of MONOPOLES

MONOPOLE CONFINEMENT

hep-lat/0302006, Y. Koma, M. Koma, E.M. Ilgenfritz, T. Suzuki, M.I.P.

Dual Abelian Higgs Model

Abelian Projection of SU(2) gluodynamics

 $\approx 90\% \sigma_{SU(2)}$

Monopole is a topological defect

EXAMPLE: 2D topological defect

 $-\pi \leq \varphi_i < \pi$

 $m = 0, \pm 1$

CL

Topology: from real numbers we get integer, thus small, but finite variation of angles does not change topological number m !!!

Monopole is a topological defect

 $\theta_p = \theta_a + \theta_d - \theta_c - \theta_d$

For each cube we have integer valued current j

$$2\pi j_{mon} = [\theta_{P1}] + [\theta_{P2}] + [\theta_{P3}] - [\theta_{P4}] + [\theta_{P4}] + [\theta_{P5}] + [\theta_{P6}]$$

These monopoles are responsible for the formation of electric string

17

Confinement in Z(2) Gauge Theory $z = \sum_{\{s=\pm 1\}} e^{-\beta S}; S = \sum_{p} s_{p}; s_{p} = s_{1}s_{2}s_{3}s_{4}$

2D example of "vortices" (they are points connected by "Dirac line")

In 3D vortices are closed lines, Dirac strings are 2d surfaces spanned on vortices

In 4D vortices are closed surfaces, Dirac strings are 3d volumes spanned on vortices

Confinement in 3D Z(2) Gauge Theory

If *p* is the probability that the plaquette is pierced by vortex then the expectation value of the plaquette is:

$$< P >= (1-p)(+1) + p(-1) = 1 - 2p$$

If vortices are uncorrelated (random) then expectation value of the Wilson loop is:

 $\langle W \rangle = (1 - 2p)^{Area} = e^{-\sigma \cdot Area}; \sigma = -\ln(1 - 2p)$

Linking number

 $L = \frac{1}{4\pi} \oint_{C_1} dx_i \oint_{C_2} dy_k \, \mathcal{E}_{ikl} \partial_l \, \frac{1}{|x-y|}$

20

4D

Vortex in 4D is a closed surface, 3d Dirac volume is enclosed by the vortex. If vortices are random then the string tension is the same as in 3D:

 $\sigma = -\ln(1 - 2p)$

Confinement in 4D SU(2) Gauge Theory by Center Vortices

Center projection: partial gauge fixing

$$U_l \Rightarrow Z_l$$

Each piercing of the surface spanned on the Wilson loop by center vortex give (-1) to W.

$$\sigma_{vortex} \approx (60\% \div 70\%) \sigma_{SU(2)}$$

Monopole confinement Compact Electrodynamics

Vortex Confinement Z(2) gauge theory

Anderson localization in lattice QCD

Dubna 2006, JINR Winter School

LECTURE II

J. Greensite, F.V. Gubarev, A.V.Kovalenko, S.M. Morozov, S. Olejnik, MIP, S.V. Syritsyn, V.I. Zakharov hep-lat/0505016, hep-lat/0504008

Anderson localization in 3D E>Ecr (mobility edge)

IPR is small

Anderson localization in 3D E<Ecr (mobility edge)

IPR is large

Eigenmodes localization is characterized by IPR

B.Kramer, A.MacKinnon (1993); C.Gattringer et al. (2001); T.Kovacs (2003); C. Aubin et al. [MILC Collaboration] (2004), J.Greensite et al. (2005) <u>F. Bruckmann, E.-M. Ilgenfritz</u> (2005) (Solid state physics, lattice fermions and bosons). Talks at Lattice 2005: N.Cundy, T.De Grand, C.Gattringer, J.Greensite, J.Hetrick, I.Horvath, Y.Koma, S.Solbrig, B.Svetitsky, S.Syritsyn, M.I.P.

By definition the inverse participation ratio (IPR) is: $I_{\lambda} = V \sum \rho_{\lambda}^{2}(x)$, where $\rho_{\lambda}(x) = |\varphi_{\lambda}(x)|^{2}$,

$$\sum \rho_{\lambda}(x) = 1, \quad \hat{H}\varphi_{\lambda}(x) = \lambda \varphi_{\lambda}(x).$$

 $I_{\lambda} \approx 1$ for delocalized states

X

x

 $I_{\lambda} \approx V$ for extremely localized states

 $I_{\lambda} = \frac{V}{I}$, where *b* is the localization volume

IPR EXAMPLES

 $I_{\lambda} = V \sum_{x} \rho_{\lambda}^{2}(x); \quad \sum_{x} \rho_{\lambda}(x) = 1 \iff I_{\lambda} = \frac{V \sum_{x} \rho_{\lambda}^{2}(x)}{\left(\sum_{x} \rho_{\lambda}(x)\right)^{2}}$

 $\rho_{\lambda}(x) = \left|\varphi_{\lambda}(x)\right|^2$

1) $\varphi_{\lambda}(x) = e^{ikx} \Longrightarrow \rho_{\lambda}(x) = 1 \Longrightarrow I_{\lambda} = \frac{V^2}{V^2} = 1$ 2) $\varphi_{\lambda}(x) = \delta_{x,y} \Longrightarrow I_{\lambda} = \frac{V \cdot 1}{1^2} = V$

fundamental representation (j=1/2) SU(2) lattice gluodynamics

Scalars

 $\Delta(A)\varphi_{\lambda}(x) = \lambda\varphi_{\lambda}(x)$

gauge field A_{μ} is generated by MC on the lattice

<u>Scalars (j=1/2)</u>

Removing center vortices we get zero string tension and zero quark condensate P. de Forcrand and M. D'Elia, Phys.Rev.Lett. 82 (1999) 4582

Z(2) gauge fixing

 $Z_{x\mu} = sign Tr U_{x\mu}$

 $\dot{U}_{x\mu} = U_{x\mu} Z_{x\mu}$

 $\sigma = 0; \langle \overline{\psi}\psi \rangle = 0$

IPR for full and vortex removed gauge field configurations for SU(2) lattice gluodynamics (fundamental Laplasian, j=1/2)

Confinement is similar to Anderson localization?

IPR for large enough • is small ?mobility edge?

Visualization of localization

Time slices, intensity of color is proportional to $\left| arphi_{\lambda}(x) ight|^2$

IPR=52

IPR=1.9

Fermions overlap Dirac operator, SU(2) gluodynamics

Overlap computer code was given to ITEP group by G. Schierholz and T. Streuer

 $D(A)\psi_{\lambda}(x) = \lambda\psi_{\lambda}(x)$

gauge field A_{μ} is generated by MC on the lattice

IPR for overlap lattice fermions before and after removing center vortices

Confinement and chiral condensate disappears after removing center vortices (P. de Forcrand and M. d'Ellia (1999); J. Gattnar et al. (2005), what happens with localization?

36

IPR for various lattice spacings

37

Localization volume

 $I_{l} = \frac{1}{N} \sum_{0 < \lambda \le 50 Mev} < I_{\lambda} > \text{IPR for low lying modes}$

 $\langle I_{\lambda} \rangle = C_0 + C_1 a^{d-4}$, *d* is the dimensionalyty of localization volume The best fit for I_1 is d = 0, for I_0 d = 1

Time slices for ρ^2 , $\rho_{\lambda}(x) = \psi_{\lambda}^+(x)\psi_{\lambda}(x)$

IPR=5.13 chirality=-1

IPR=1.45 chirality=0

Localization properties of overlap fermions and scalars (fundamental representation, j=1/2) are qualitatively (not quantitatively) similar

<u>Scalars</u>

adjoint (j=1) and j=3/2 representation SU(2) lattice gluodynamics

 $\Delta(A)\varphi_{\lambda}(x) = \lambda\varphi_{\lambda}(x)$

gauge field A_{μ} is generated by MC on the lattice

Adjoint localization volume d=2? No!

Additional analysis (hep-lat/0504008) show that adjoint localization volume is 4d, but shrinks to zero in the continuum limit

42

j=3/2 representation

Or very strong localization (d=0) or localization volume very fast shrinks to zero when a \blacklozenge 0

Low dimensional structures in lattice gluodynamics by other groups

- I. Horvath et al. hep-lat/0410046, hep-lat/0308029, Phys.Rev. D68:114505,2003
- 2. MILC collaboration hep-lat/0410024
- 3. <u>Y. Koma, E.-M. Ilgenfritz, K. Koller,</u> <u>G. Schierholz, T. Streuer, V.</u> <u>Weinberg</u> hep-lat/0509164

<u>Summary</u>

O. Analogue of the Anderson localization in quantum field theory is observed.

1. Localization of eigenfunctions of the Laplacian and Dirac operator is a manifestation of the possible existence of low dimensional objects in the QCD vacuum. Dependence of results on lattice spacing is clearly seen.

2. The density of the states is in physical units, while the localization volume of the modes tends to zero in physical units hep-lat/0505016 "Fine tuning phenomenon" and "Holography".

<u>Lowdimensional objects</u> <u>Instanton vacuum -></u> <u>->3d submanyfolds</u>

<u>Y. Koma, E.-M. Ilgenfritz, K.</u> <u>Koller, G. Schierholz, T.</u> <u>Streuer, V. Weinberg</u> heplat/0509164

Fine tuning Size of $|\psi|^2$ is $\propto a = \frac{1}{\Lambda_U}$ Energy of ψ is $\propto \Lambda_{OCD}$

 $\langle \overline{\psi}\psi \rangle = -\pi\rho(\lambda_n \to 0)$

Banks-Casher (1980)

Removing center vortices

Confinement and chiral condensate disappears after removing center vortices (P. de Forcrand and M. d'Ellia (1999); J. Gattnar et al. (2005), what happens with localization?

Quark condensate

 $\langle \overline{\psi}\psi \rangle = -\pi \rho(\lambda_n \rightarrow 0)$ Banks-Casher (1980)

Result is in agreement with S.J.Hands and M.Teper (1990), (Wilson fermions)

52

The action of monopoles and center vortices is singular, they exist due to energy-entropy balance (the entropy of lines and surfaces is also singular)

3D volum

$$\frac{1}{a} = \Lambda_{UV}$$
Monopoles
$$L_{mon} \approx 31 \frac{V_4}{fm^3}, \qquad S_{mon} \approx 1.9 \frac{L_{perc}}{a}$$
Center vortices
$$A_{vort} \approx 24 \frac{V_4}{fm^2}, \qquad S_{vort} \approx 0.53 \frac{A_{vort}}{a^2}$$
3D volumes
$$V_{3d} \approx 2 \frac{V_4}{fm}, \qquad S_{3d} \approx 0$$

Length of IR monopole cluster const L scales, $\rho_{IR} =$ $ho_{\scriptscriptstyle UV}$ $V_{\scriptscriptstyle \varDelta}$ a 20 perc fin -----*15* fim *10* X_3 5 X_2 X_1 0 0.05 0.1 0.15 0.2 a, fm 14C

Monopoles have fine tuned action density:

P-VORTEX density, Area/(6*V₄), scales:

Minimal 3D Volumes bounded by P-vortices scale

P-VORTEX has UV divergent action density: (S-S_{vac})=Const./95² In lattice units

Monopoles belong to surfaces (center vortices). Surfaces are bounds of minimal 3d volumes in Z(2) Landau gauge

3D analogue:

Minimal 3d volume corresponds to minimal surface spanned on center vortex

 $F_{\mu\nu} \cong O(\frac{1}{a^2})$

 $A_{\mu} \cong O(\stackrel{1}{-})$

59

Workshop on Computational Hadron Physics, Hadron Physics I3 Topical Workshop, Cyprus, September 14-17, 2005

Localization of the scalar and fermionic eigenmodes and confinement

J. Greensite, F.V. Gubarev, A.V.Kovalenko, S.M. Morozov, S. Olejnik, MIP, S.V. Syritsyn, V.I. Zakharov hep-lat/0505016, hep-lat/0504008